A Understanding Integration by Parts in Quantum Field Theory

looseleaf
Messages
24
Reaction score
1
Hello, I'm just starting Zee's QFT in a Nutshell, I'm a bit confused about what he means by "integate by parts under the d4x". Can someone explain what he means by this? I understand how to obtain the Klein-Gordon equation from the free particle Lagrangian density, but not sure why he invokes integration by parts.
Thanks!
Screen Shot 2019-03-22 at 7.57.24 PM.png
 

Attachments

  • Screen Shot 2019-03-22 at 7.57.24 PM.png
    Screen Shot 2019-03-22 at 7.57.24 PM.png
    22 KB · Views: 836
Physics news on Phys.org
Well, you have a ##(\partial \varphi)(\partial \varphi)## term, but ##\varphi\partial ^2 \varphi## is more useful later.

Both arise from the derivative of ##(\varphi)(\partial \varphi)## and that should go to zero for large ##\phi##.
 
  • Like
Likes DarMM
To expand on what @mfb said.

We have:
$$\partial_{\mu}\left(\phi\partial^{\mu}\phi\right) = \partial_{\mu}\phi\partial^{\mu}\phi + \phi\partial^{2}\phi$$
Under the integral:
$$\int{\partial_{\mu}\left(\phi\partial^{\mu}\phi\right)d^{4}x} = \int{\partial_{\mu}\phi\partial^{\mu}\phi \hspace{1pt} d^{4}x} + \int{\phi\partial^{2}\phi \hspace{1pt} d^{4}x}$$
So assuming the left-hand side vanishes we'd have:
$$\int{\partial_{\mu}\phi\partial^{\mu}\phi \hspace{1pt} d^{4}x} = - \int{\phi\partial^{2}\phi \hspace{1pt} d^{4}x}$$
which is exactly the replacement made in Zee.

Since the LHS term is just a surface term it should vanish if the fields decay rapidly. They do, but proving so is a good bit beyond a text like Zee. Basically you'd have to prove a randomly selected field decays at infinity with probability ##1##.
 
  • Informative
Likes mfb
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top