Understanding Laplace Transform of f(t)

georgeh
Messages
67
Reaction score
0
i have f(t) defined piece-wise and continous..
f(t) = 0, t < 2pi
t-pi , pi <=t<2pi
0 , t >=2pi

i have so far g(t)=U_pi*f(t-pi)-U_2pi*f(t-pi)
if i do the laplace,
i get e^-pis/s^2-e^-2pis/s^2
in the book, they have
e^-pi*s/s^2 -e^-2pi*s/s^2 (1+pi*s)
I am not sure how they got the factor of (1+pi*s)
..
 
Physics news on Phys.org
Are you sure f(t) is correct. You have:
f(t) = \left\{ \begin{array}{l} 0, \,\, t&lt;2\pi \\ t-\pi, \,\, \pi \leq t &lt; 2\pi \\ 0, \,\, t \geq 2\piSo when t&lt;2\pi and \pi \leq t &lt; 2\pi \\ it equals 0 and t-\pi. I'm assuming you mean f(t) = 0|t&lt;\pi ?

I got (assuming f(t) is wrong):

\frac{e^{-\pi s}}{s^2} - \frac{\pi e^{-2\pi s}}{s} - \frac{e^{-2\pi s}}{s^2}
 
Last edited:
sorry, what i meant was
on the first interval, t < pi, not two pi.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top