Understanding Limit Points and Isolated Points in Different Sets

  • Thread starter Thread starter Unassuming
  • Start date Start date
  • Tags Tags
    Limit
Unassuming
Messages
165
Reaction score
0
Could somebody throw their hat in with me on these?

a. \{1- \frac{(-1)^n}{n}:n \in \mathbb{N} \}

Limit point = 1 , Isolated points are equal to the whole set

b. \{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \}

Limit points are -1 and 1, Isolated points are the whole set

c. (0,1) \cup 2

Limit points are [0,1], Isolated point is 2.

d. \mathbb{N}

Limit points none, Isolated points are \mathbb{N}

e. \mathbb{R} \backslash \mathbb{Q}

Limit points are \mathbb{R}, Isolated points are none.

f. \mathbb{Q} \cap (0,1)

Limits points are [0,1], Isolated points are none
 
Last edited:
Physics news on Phys.org
If by limit/isolated points you mean limit/isolated points in R with its usual topology, then I agree with what you have.
 
Yes, thanks morphism.

I meant usual topology and R1. thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top