Understanding Limits: Evaluating Tricky Expressions

  • Thread starter Thread starter johnq2k7
  • Start date Start date
johnq2k7
Messages
53
Reaction score
0
2.) Evaluate the following limits, justifying your answers. If a limit does not exist explain why.

a.) lim (x--> inf.) (3x^3 +cos x)/(sin x- x^3)


b.) lim (x-->Pie(+)) (tan^-1 (1/(x-Pie)))/(Pie-x


I have no idea, what do here please help me with these problems!
 
Physics news on Phys.org
For a, factor x^3 from both terms in the numerator and both terms in the denominator.
For b, if I'm interpreting what you wrote correctly, the numerator is approaching pi/2 (note spelling -- the name of this Greek letter is pi, not pie), and the denominator is approaching 0, so the quotient is getting large without bound.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top