Understanding ODE Substitution with a Practical Example

  • Thread starter Thread starter tony873004
  • Start date Start date
  • Tags Tags
    Method Ode
tony873004
Science Advisor
Gold Member
Messages
1,753
Reaction score
143
This is another example from the blackboard that I'm trying to understand.

\frac{{dy}}{{dx}} = \frac{{x^2 + 3xy + y^2 }}{{x^2 }}

Divide through by x^2
\frac{{dy}}{{dx}} = 1 + \frac{{3y}}{x} + \left( {\frac{y}{x}} \right)^2

make substitution
let\,\,v = \frac{y}{x}

Therefore,
y = vx\,

But the next step in the example says
y = vx\frac{{dy}}{{dx}} = v\frac{{dv}}{{dx}}

How did the dy/dx pop in there?
 
Physics news on Phys.org
Your 'copying from the blackboard' is wildly inaccurate. Why don't you just try to solve it without trying to verify inaccurate notes? If y=v*x, dy/dx=x*dv/dx+v.
 
Dick said:
...If y=v*x, dy/dx=x*dv/dx+v.

Thanks, Dick. That got me through the rest of the problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top