Understanding Orbital Speed and Energy Dynamics

AI Thread Summary
The discussion centers on the relationship between orbital speed and energy dynamics for a shuttle in orbit near Earth. It highlights the contradiction between the need to increase speed to achieve a smaller orbital radius and the concept that total energy becomes more negative as radius decreases, suggesting kinetic energy should decrease. Participants clarify that to transition to a lower orbit, the shuttle must first enter an elliptical trajectory, where speed varies throughout the orbit. The total energy is expressed as negative, indicating that while kinetic energy increases in smaller orbits, potential energy remains negative, leading to a complex interplay of forces. Understanding these dynamics is essential for accurately predicting orbital behavior and energy changes.
lockerman2007
Messages
9
Reaction score
0
I have a question about orbital speed.
Imagine a shuttle moving in an orbit near the Earth surface,
its total energy is "-GMm/2r", so its total energy is directly proportional to -1/r

In order to spiral into another orbit of smaller radius which mean it would have a larger angular speed, the shuttle should increase or decrease its orginal speeed so that it can get into a lower orbital ?

1) increase
As orbital speed = (GM/r)^1/2, speed should increase in order to get a smaller r.

2) decrease
As total energy directly proportional to -1/r,
and total energy = PE + KE
As r decrease, total energy is more negative and KE should decrease
So the speed should decrease.

Are there anything wrong in these two contradicting concept ?
thank you!
 
Physics news on Phys.org
Imagine you want put the shuttle in a higher orbit. You must increase its energy. For this, you accelerate the shuttle, which gets more speed (it is still at the same height). Having a bigger speed, the shuttle does not follow the same orbit, but takes an elliptical trajectory with a bigger apogee. In this trajectory the Earth gravitational force brakes the shuttle (do a drawing) and its speed diminishes. At the apogee the energy is always the same but the speed is lower. Now, if you want the shuttle to take a circular orbit with this radius as apogee, you must increment its speed. Otherwise it will follow the elliptical trajectory with the previous perigee.
You cannot just say "to increase the radius you increase speed". To change radius, you must pass through an elliptical trajectory, and then the speed changes.
 
lockerman2007 said:
I have a question about orbital speed.
Imagine a shuttle moving in an orbit near the Earth surface,
its total energy is "-GMm/2r", so its total energy is directly proportional to -1/r

In order to spiral into another orbit of smaller radius which mean it would have a larger angular speed, the shuttle should increase or decrease its orginal speeed so that it can get into a lower orbital ?

1) increase
As orbital speed = (GM/r)^1/2, speed should increase in order to get a smaller r.

2) decrease
As total energy directly proportional to -1/r,
and total energy = PE + KE
As r decrease, total energy is more negative and KE should decrease
So the speed should decrease.

Are there anything wrong in these two contradicting concept ?
thank you!

The total kinetic energy is more properly expressed as

E_t = \frac{GMm}{2a}

Where a is the semi-major axis of the orbit( or average radius of the orbit). This allows one to consider elliptical orbits as well.
Total energy can also be expressed as
E_t = \frac{mv^2}{2}- \frac{GMm}{r}
Where r is the radius of your orbit at any given moment.

If you decrease v, then KE drops, The total energy drops, and 'a' decreases. (You drop into an elliptical orbit with a smaller average altitude.)

As you start to "fall" you lose PE. To compensate, your velocity increases to increase your KE. When you reach perigee, your velocity is so large, that you start to climb back out, losing velocity as you do so, unitl you return to the point where you decreased v, and you satrt the cycle all over again.
 
Last edited:
lockerman2007 said:
I have a question about orbital speed.
Imagine a shuttle moving in an orbit near the Earth surface,
its total energy is "-GMm/2r", so its total energy is directly proportional to -1/r

In order to spiral into another orbit of smaller radius which mean it would have a larger angular speed, the shuttle should increase or decrease its orginal speeed so that it can get into a lower orbital ?

1) increase
As orbital speed = (GM/r)^1/2, speed should increase in order to get a smaller r.

2) decrease
As total energy directly proportional to -1/r,
and total energy = PE + KE
As r decrease, total energy is more negative and KE should decrease
So the speed should decrease.

Are there anything wrong in these two contradicting concept ?
thank you!
The total energy is negative (-GMm/2r)as you have written. The potential energy also is negative (-GMm/r). The kinetic energy is positive and is equal to +GMm/2r. Therefore, the kinetic energy is greater in an orbit of smaller radius.
Once you note the significance of the negativeness of the potential energy and the total energy, your doubt will be cleared.
Note that the total energy and the kinetic energy are equal in value, but the total energy is negative where as the kinetic energy is positive.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top