Understanding Shared Potential Energy in a Gravitational System

AI Thread Summary
In a gravitational system with two point masses, the gravitational potential energy is defined as U_grav = -G(m_1m_2/r). The discussion highlights a common confusion regarding why potential energy isn't shared between the two masses in a ratio. When analyzing the motion of one mass, it is typically assumed that the other mass is so large that it remains effectively stationary. This approach works well for scenarios like objects in Earth's gravitational field or planets orbiting the sun. However, if the masses are similar, the analysis becomes more complex, requiring a different approach that accounts for both bodies in motion.
PFuser1232
Messages
479
Reaction score
20
Given two point masses, ##m_1## and ##m_2##, we define the gravitational potential energy of this system as:

$$U_{grav} = -G \frac{m_1m_2}{r}$$

Where ##r## is the separation between ##m_1## and ##m_2##.

When we analyze the motion of a single component, say ##m_1## in this system, we usually say things like:

The potential energy of ##m_1## is:

$$U_{grav} = -G \frac{m_1m_2}{r}$$

This is where my intuition fails. As dumb as this may sound, why isn't potential energy shared in some ratio between ##m_1## and ##m_2##?
 
Physics news on Phys.org
MohammedRady97 said:
This is where my intuition fails. As dumb as this may sound, why isn't potential energy shared in some ratio between ##m_1## and ##m_2##?

When we're analyzing the problem in terms of the motion of only one of the two bodies, we are making an assumption that mass of the other body is so great that it is effectively not moving at all. That works just fine for objects moving around in Earth's gravitational field (where you probably first saw this treatment of potential energy), planets orbiting the sun, and the like.
 
Nugatory said:
When we're analyzing the problem in terms of the motion of only one of the two bodies, we are making an assumption that mass of the other body is so great that it is effectively not moving at all. That works just fine for objects moving around in Earth's gravitational field (where you probably first saw this treatment of potential energy), planets orbiting the sun, and the like.

What if the masses of the two bodies were similar? How would our analysis differ in that case?
 
MohammedRady97 said:
What if the masses of the two bodies were similar? How would our analysis differ in that case?
The problem becomes appreciably harder, but you can choose coordinates in which the center of mass of the two bodies is at rest and both objects are in motion and you'll get sensible results.
 
Nugatory said:
When we're analyzing the problem in terms of the motion of only one of the two bodies, we are making an assumption that mass of the other body is so great that it is effectively not moving at all. That works just fine for objects moving around in Earth's gravitational field (where you probably first saw this treatment of potential energy), planets orbiting the sun, and the like.

So the approximation is that we consider one mass to be stationary, correct?
 
MohammedRady97 said:
So the approximation is that we consider one mass to be stationary, correct?
Yes.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top