Ted123
- 428
- 0
Does
\displaystyle S^2_X = \sum^n_{i=1} (X_i - \overline{X})^2
mean
\displaystyle S_X = \sum^n_{i=1} (X_i - \overline{X}) (X is a random variable here)
and is this true of summations in general?
i.e. does \sqrt{\sum X_i^2} = \sum X_i ?
I thought it'd be \sqrt{\left( \sum X_i\right) ^2} = \sum X_i ?
\displaystyle S^2_X = \sum^n_{i=1} (X_i - \overline{X})^2
mean
\displaystyle S_X = \sum^n_{i=1} (X_i - \overline{X}) (X is a random variable here)
and is this true of summations in general?
i.e. does \sqrt{\sum X_i^2} = \sum X_i ?
I thought it'd be \sqrt{\left( \sum X_i\right) ^2} = \sum X_i ?