Understanding the Equalizing Nature of Negative Feedback in Op Amps

  • Thread starter Thread starter sidvelu
  • Start date Start date
  • Tags Tags
    Amp Op amp
AI Thread Summary
Negative feedback in operational amplifiers (op amps) ensures that the output adjusts to equalize the positive and negative inputs. If the negative input is lower than the positive, the output increases, raising the negative input voltage closer to the positive input. Conversely, if the negative input is higher, the output decreases, driving the negative input down. This equalization principle applies to both inverting and non-inverting configurations, as the feedback mechanism is central to their operation. Understanding this concept clarifies how op amps maintain stability in various applications.
sidvelu
Messages
3
Reaction score
0
I understand how to apply op amps, but one thing about op amps had bugged me for some time. I want to know what about an op amp in negative feedback forces both the posotive and negative inputs to be equal. And could your explanation be for both an inverting and non inverting op amp.

Thanks! :)
 
Engineering news on Phys.org
sidvelu said:
I understand how to apply op amps, but one thing about op amps had bugged me for some time. I want to know what about an op amp in negative feedback forces both the posotive and negative inputs to be equal.

Welcome back to PF.

If the (-) input were significantly lower than the (+) input, that would drive the output high, since V_{out}=A\cdot(V_+-V_-). And because of the feed back to the (-) input, driving the output high would raise the voltage at (-) input, driving it closer to the voltage at the (+) input.

A similar argument applies to considering if the (-) input were significantly higher then the (+) input.

And could your explanation be for both an inverting and non inverting op amp.
Not sure what you mean here. Op amps are not "inverting" or "non inverting", those terms refer to the two inputs of any op amp. The explanation only works for feedback to the inverting input, that I refer to as (-) above.
 
Last edited:
oh okay, that makes more sense now. I should've drawn that conclusion on my own, but i guess i was just being stupid.

Thanks alot!
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Back
Top