Understanding the Hilbert Space Postulate in Quantum Mechanics?

AI Thread Summary
The discussion centers on the Hilbert space postulate in quantum mechanics, emphasizing that observables have complete eigenfunctions. It explains that position kets |x> and momentum kets |p> span the Hilbert space, with operators x' and p' defined accordingly. The relationship between these operators is highlighted through Fourier transforms, indicating that the Hamiltonian can be expressed in terms of them. The conversation also addresses whether energy eigenstates are inherently complete or if this completeness arises from the completeness of position and momentum eigenstates. Ultimately, it suggests that the ability to express states as combinations of energy eigenstates is crucial for quantum mechanics principles like the variational principle.
lackrange
Messages
19
Reaction score
0
So one of the postulate of quantum mechanics is that observables have complete eigenfunctions. Can someone let me know if I am understanding this properly:

Basically you postulate for example, position kets |x> such that any state can be represented by a linear combination of these states (integral), and you postulate an operator x' such that x'|x>=x|x>. So basically the Hilbert space is the span of |x>?...Then you can postulate other kets, like momentum kets |p> that also span the Hilbert space, and you postulate an operator p' such that p'|p>=p|p>. Then any state can be represented as an integral over |p>, including the position states. So by postulation, the span of |x> equals the span of |p>? Then we postulate the Schrodinger equation, and write H' as some combination of the x' and p' operators, and that the eigenfunctions of H' (which can be written in terms of |x> or |p>) span the same space spanned by |x> and |p>?...How do we know this? Or do instead the eigenfunctions of H' define the Hilbert space, and there are states that can be represented by linear combinations of |x> or |p> but aren't actual states?
 
Physics news on Phys.org
Yeah, that's right. The Hilbert space can be spanned by the eigenvectors of x' or p', which is made explicit by the fact that you can write one operator in terms of the other--specifically, they're Fourier transforms of each other. The Hamiltonian is then defined in terms of those operators, and by solving for its eigenvalues we find the allowable values of energy in the system.

I'm not sure what you mean by your last line, though, "Or do instead the eigenfunctions of H' define the Hilbert space, and there are states that can be represented by linear combinations of |x> or |p> but aren't actual states?" Any state that is a linear combination of |x>'s or |p>'s must itself be a state in the Hilbert space, although they may or may not be eigenstates of the Hamiltonian.

The eigenstates of the Hamiltonian do span the Hilbert space, though, so it's possible to build x or p eigenstates out of pure energy states, if that's what you're asking. This is especially easy to see in the case of a free Hamiltonian, where H = p^2/2m, so eigenstates of momentum are also eigenstates of energy and vice versa.
 
That's basically what I'm asking. So is the fact that the energy eigenstates are complete part of the postulate, or is it just a result of the position and momentum eigenstates being complete? If it's the latter, is it obvious?
 
That's something I've never been completely clear on, either. It's definitely true that they do--that fact is used in lots of QM calculations--but I don't know exactly how one proves it. My impression has always been that there's some sort of deep theorem here which says that the eigenstates of any Hermitian operator span the space, or something along those lines, but I don't know exactly what it is. Perhaps somebody better-versed in the technicalities of linear algebra can shed some light on this?
 
Ok. So basically if you could measure a particle to be at position b, then the position operator has to have an associated eigenket |b>, and whatever states these eigenkets span, H' also spans? I think this would have to be provable..otherwise when you use the variational principle, how would you know if the function you choose can be expressed as a combination of energy eigenstates, which the whole principle relies on?..
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top