ManishR
- 88
- 0
\intop_{a}^{b}f(x)dx=\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}f\left(a+i\frac{(b-a)}{h}\right)\frac{(b-a)}{h}
if f(x) = x
\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(a+i\frac{(b-a)}{h})\frac{1}{h}\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{a}{h}+i\frac{(b-a)}{h^{2}})\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{a}{h}+i\frac{(b-a)}{h^{2}})\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(i\frac{(b-a)}{h^{2}})\right)\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+(b-a)\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{i}{h^{2}})\right)\right]
let
\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{i}{h^{2}})=k
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+(b-a)k\right]
if
\intop_{a}^{b}f(x)dx=b^{2}-a^{2}
\Rightarrow b^{2}-a^{2}=(b-a)\left[a+(b-a)k\right]
\Rightarrow k=\frac{b}{b-a}
but k cannot be function of anything.
so what's wrong here ?
if f(x) = x
\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(a+i\frac{(b-a)}{h})\frac{1}{h}\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{a}{h}+i\frac{(b-a)}{h^{2}})\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{a}{h}+i\frac{(b-a)}{h^{2}})\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(i\frac{(b-a)}{h^{2}})\right)\right]
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+(b-a)\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{i}{h^{2}})\right)\right]
let
\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{i}{h^{2}})=k
\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+(b-a)k\right]
if
\intop_{a}^{b}f(x)dx=b^{2}-a^{2}
\Rightarrow b^{2}-a^{2}=(b-a)\left[a+(b-a)k\right]
\Rightarrow k=\frac{b}{b-a}
but k cannot be function of anything.
so what's wrong here ?