Understanding the Limit of a Sum in the Integral of f(x)=x

  • Thread starter Thread starter ManishR
  • Start date Start date
  • Tags Tags
    Integral
ManishR
Messages
88
Reaction score
0
\intop_{a}^{b}f(x)dx=\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}f\left(a+i\frac{(b-a)}{h}\right)\frac{(b-a)}{h}

if f(x) = x

\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(a+i\frac{(b-a)}{h})\frac{1}{h}\right]

\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{a}{h}+i\frac{(b-a)}{h^{2}})\right]

\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{a}{h}+i\frac{(b-a)}{h^{2}})\right]

\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(i\frac{(b-a)}{h^{2}})\right)\right]

\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+(b-a)\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{i}{h^{2}})\right)\right]

let

\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}(\frac{i}{h^{2}})=k

\Rightarrow\intop_{a}^{b}f(x)dx=(b-a)\left[a+(b-a)k\right]

if

\intop_{a}^{b}f(x)dx=b^{2}-a^{2}

\Rightarrow b^{2}-a^{2}=(b-a)\left[a+(b-a)k\right]

\Rightarrow k=\frac{b}{b-a}

but k cannot be function of anything.

so what's wrong here ?
 
Physics news on Phys.org
Hi ManishR! :smile:

i] ∑ i/h2 = (1/h2) ∑ i

ii] ∫ab x dx is not b2 - a2 :wink:
 
You goofed going from the 4th to 5th line when you pulled the "a" out of the limit. You have to equalize the denominators, collect on i and solve the summations. Then you'll get the required 1/2 (b2-a2).
 
tiny-tim said:
ii] ∫ab x dx is not b2 - a2 :wink:

\int_{a}^{b}f(x)dx=\frac{1}{2}(b^{2}-a^{2})

\Rightarrow\frac{1}{2}(b^{2}-a^{2})=(b-a)[a+(b-a)k]

\Rightarrow k=\frac{1}{2}

ok everything is alright
thanks tiny-tim
 
Last edited:
dimitri151 said:
You goofed going from the 4th to 5th line when you pulled the "a" out of the limit. You have to equalize the denominators, collect on i and solve the summations. Then you'll get the required 1/2 (b2-a2).

i don't see any problem in 5th step. would you care to elaborate.
 
It's technically not incorrect. It just looked like that's why you got confused. You should have finished your algebra and then did your summations. How could you know the sum on 1 and not on i?
 
dimitri151 said:
It's technically not incorrect. It just looked like that's why you got confused.

again how ?

are you saying

\sum_{i=0}^{h}(f(h)+g(i))=h.f(h)+\sum_{i=0}^{h}g(i)

is wrong ?
 
ManishR said:
again how ?

are you saying

\sum_{i=0}^{h}(f(h)+g(i))=h.f(h)+\sum_{i=0}^{h}g(i)

is wrong ?

It IS wrong.

Should be (h+1) on the right.
 
l'Hôpital said:
It IS wrong.

Should be (h+1) on the right.

sorry i forgot to account for 0th term,

RHS = (h+1)f(h) + ,,
 
  • #10
\int_{a}^{b}xdx=(b-a)\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}\frac{f(a-i\frac{(b-a)}{h})}{h}

\int_{a}^{b}xdx=(b-a)\left[a+(b-a)\left(\underset{h\rightarrow\infty}{lim}\sum_{0}^{h}\frac{i}{h^{2}}\right)\right]

\int_{a}^{b}xdx=(b-a)\left[a+(b-a)\left(\underset{h\rightarrow\infty}{lim}\frac{1}{h^{2}}\sum_{0}^{h}i\right)\right]

\int_{a}^{b}xdx=(b-a)\left[a+(b-a)\left(\underset{h\rightarrow\infty}{lim}\frac{1}{h^{2}}\frac{h(h+1)}{2}\right)\right]

\int_{a}^{b}xdx=(b-a)\left[a+\frac{(b-a)}{2}\left(\underset{h\rightarrow\infty}{lim}\frac{h+1}{h}\right)\right]

\int_{a}^{b}xdx=(b-a)\left[a+\frac{(b-a)}{2}\left(\underset{h\rightarrow\infty}{lim}\frac{1+\frac{1}{h}}{1}\right)\right]

\int_{a}^{b}xdx=(b-a)\left[a+\frac{(b-a)}{2}\left(1+\underset{h\rightarrow\infty}{lim}\frac{1}{h}\right)\right]

\int_{a}^{b}xdx=(b-a)\left[a+\frac{(b-a)}{2}\right]

\int_{a}^{b}xdx=\frac{\left(b^{2}-a^{2}\right)}{2}
 
  • #11
Perfect! :smile:

(nice LaTeX too, btw)

(except personally, i'd have gone straight from lim h(h+1)/2h2 to 1/2, and I'd have put in an extra line just before the end, with (b+a)/2 :wink:)
 
Back
Top