- 4,796
- 32
I don't understand how to show that
\lim_{n \rightarrow \infty} \left(1-\frac{a}{n} \left)^{n} = e^{-a} \ \ \forall a \in \mathbb{R}
For exemple, if I say "Let x be the real number such that n=-ax \Leftrightarrow x=-n/a. Then the limit is equivalent to
\lim_{-ax \rightarrow \infty} \left(1+\frac{1}{x} \right)^{-ax} = \left(\lim_{-ax \rightarrow \infty} \left(1+\frac{1}{x} \right)^{x} \right)^{-a}
"but -ax \rightarrow \infty is not equivalent to x \rightarrow \infty, so I can't conclude that the limit is e^{-a}.
What am I missing here ?
\lim_{n \rightarrow \infty} \left(1-\frac{a}{n} \left)^{n} = e^{-a} \ \ \forall a \in \mathbb{R}
For exemple, if I say "Let x be the real number such that n=-ax \Leftrightarrow x=-n/a. Then the limit is equivalent to
\lim_{-ax \rightarrow \infty} \left(1+\frac{1}{x} \right)^{-ax} = \left(\lim_{-ax \rightarrow \infty} \left(1+\frac{1}{x} \right)^{x} \right)^{-a}
"but -ax \rightarrow \infty is not equivalent to x \rightarrow \infty, so I can't conclude that the limit is e^{-a}.
What am I missing here ?
