That confusion was my mistake, I thought you were talking about something different.
What I meant was that (and I still haven't taken the time to do any of this even semi-rigorously, so this is all just a mental image) the Lorentz factor is a function of velocity (I'm going to drop the relatives because I'll always be talking about an object and a single observer). Time dilation is obviously directly connected to the Lorentz Factor. It makes sense (non-mathematically, so far at least) to me that at any point you could measure the elapsed time and also measure the proper time (this is assuming you know the equations of motion) of the object. From that, as time elapsed becomes infinitesimal, it seems that you could define a ratio that is somewhat akin to saying 'how much faster is my time flowing than his'.
In my purely mental image, it seems like this ratio would be the derivative \frac{dt}{d\tau}
Assuming everything I have said so far is correct, which I am prepared to be wrong about, it would then be a matter of reverse-working the dt/d\tau in order to get the instantaneous velocity of the object at that point.
I guess it's silly to be arguing for this method's usefulness because the confusion is whether this is a legitimate way to represent something that's known to be useful. My only real interest at the beginning was curiosity towards the origins of the lorentz factor in a non historical setting.