Understanding the Relationship Between Momentum and Energy: A Classical Approach

  • Thread starter Thread starter TheCelt
  • Start date Start date
  • Tags Tags
    Energy Momentum
AI Thread Summary
The discussion focuses on the relationship between momentum and energy, particularly in classical mechanics. The initial attempt to derive energy from momentum using the equations for kinetic energy and momentum led to confusion regarding the correct formulation. It was clarified that the equation E=1/2mv^2 applies only to massive particles at non-relativistic speeds, while massless particles require a different approach. The correct energy-momentum relationship for massless particles is given by E^2 = m^2c^4 + p^2c^2, emphasizing the need for relativistic considerations. The conversation suggests avoiding quantum mechanical methods and instead manipulating classical definitions to derive the relationships accurately.
TheCelt
Messages
24
Reaction score
5
Homework Statement
Relate energy equation to the momentum equation for particles
Relevant Equations
$$\lambda = h/p$$
$$p = mv$$
$$E=1/2mv^2$$
I am trying to relate these equations to get the energy with respect to momentum based on particle wavelengths.

I did the following:

$$\lambda = h/p$$ so $$p= h/ \lambda $$

Then

$$p=mv$$ and $$E=1/2mv^2$$

So

$$E = pv/2 $$

But the answer was:

$$E = p^2/2m $$

I don't understand how they got this answer or why mine is wrong ?
 
Physics news on Phys.org
TheCelt said:
$$E=1/2mv^2$$
That equation is for the kinetic energy of a massive object at non-relativistic speeds.

It seems that you are trying to use the momentum of a massless particle (e.g. a burst of light) to compute the energy of that burst.

Let us look at the correct formulation for the relativistic kinetic energy first and see where the ##E=\frac{1}{2}mv^2## comes from...

You are, of course, familiar with ##E=mc^2##. That is the formula for the energy of a massive particle at rest.

When the particle is moving, the total energy (rest energy plus kinetic energy) is given by ##\gamma mc^2## where ##\gamma## is the factor: ##\frac{1}{\sqrt{1-v^2/c^2}}##

If you subtract out the rest energy, what is left is the kinetic energy. This is given by ##(\gamma - 1)mc^2##. If you work through taking the derivatives of this with respect to v and turn it into a Taylor series, the first terms in the series will cancel out to zero and the first non-zero term will turn out to be ##\frac{1}{2}mv^2##.

But as I started out saying, we are not dealing with massive particles. We are dealing with massless particles moving at the speed of light. The relativistic ##\gamma## goes infinite. We cannot use the low speed approximation (##E=\frac{1}{2}mv^2##).

A proper way to proceed is with the energy-momentum equation: $$E^2 = m^2c^4 + p^2c^2$$Or:$$m^2c^4 = E^2 - p^2c^2$$In the latter form, this is a statement that "Invariant mass is the magnitude of the Energy-Momentum 4-vector".
 
The question involved non relativistic particles. Your answer is very different to the answer they give.
 
Are you requested to use the wavelength to do the problem? If you do it using "waves" you will need to use the group velocity.
 
I am unfamiliar with what group velocity is ?
 
TheCelt said:
Then

$$p=mv$$ and $$E=1/2mv^2$$

Solve the first equation for ##v##, and substitute the result into the second equation.
 
TheCelt said:
I am unfamiliar with what group velocity is ?
Then you probably shouldn't use quantum mechanical methods to prove the question. You should manipulate the classicle definitions as mentioned by @George Jones. Given mass momentum and KE you should be able to express each as a combination of the other two with facility.
 
Back
Top