Understanding Time Dilation: A Confusing Experiment Explained

chocolatesheep
Messages
3
Reaction score
0
I've seen an experiment with a light clock that explains time dilation. A photon is fired and gets reflected off of 2 parallel mirrors. It keeps bouncing back and forth like that, with each bounce qualifying as one tick of the clock. And it looks like that from a stationary reference frame. Now if the clock is moving to the right at some highs speed relative to us, the photon would need to travel in a triangular path. Therefor it takes longer for the clock to tick considering that the speed of light or a photon is constant and equal "c" for all reference frames. I'm sure you all know what the diagram of this experiment looks like: http://spiff.rit.edu/classes/phys200/lectures/dilation/red_time_a.gif


Now here's what I don't understand. Imagine the same scenario, now with a person in the same reference frame as the clock inside a space ship. So now we have that person and our light clock moving to the right at some high speed. The person looks at the clock, a photon is fired straight up from the bottom mirror to the top mirror so it's just bouncing back and forth infinitely. When we look at the photon being fired, wouldn't the photon just travel straight up and down a few times (non triangular path) and then just slam into the back of the spaceship (because the spaceship is moving towards it). That's what I don't understand. Because from what I've read, the photon is moving to the right with the entire space ship. How does it get that velocity to the right when the speed of electromagnetic waves is not dependant of the speed of the source. Why wouldn't the photon slam into the back of the spaceship?

Thanks in advance.
 
Physics news on Phys.org
Imagine you are in an almost empty 747 airplane, seats removed, flying at a high and constant velocity and without any turbulence.

Could you bounce a basketball?
Or play table tennis?

Would the ball slam into the back of the plane or would it simply come straight up?
Or when you use the water faucet does the water crash against the wall instead of going straight down?
 
So does that mean that inertia applies to photons also?
 
chocolatesheep said:
So does that mean that inertia applies to photons also?
What would happen when you shine a laser pointer to the roof of the plane, does the light beam curve or does it go straight up?
 
There is a recurring confusion about this, usually from reading Einstein translated from the German, or from other sources that don't clear the distinction carefully. The translations use the word "velocity" for the German word meaning simply "speed". But velocity includes direction...

So, when you read that the "velocity" of light is independent from the source motion, one may think this includes both speed and direction, and then it does seem to suggest that the light shouldn't "carry long" with a moving source because of the light's direction (the direction being at right angle for the local observer with the clock, but if also at right angle from the perspective of an observer at rest, that observer would expect the light to be left behind the advancing mirrors and hit the spacecraft wall).

But only light's speed is independent of the source motion, not its velocity (not the direction component).
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Replies
58
Views
4K
Replies
16
Views
2K
Replies
15
Views
2K
Replies
17
Views
4K
Replies
54
Views
3K
Replies
88
Views
7K
Replies
46
Views
4K
Back
Top