(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let f,g be continuous on a closed bounded interval [a,b] with |g(x)| > 0 for all x in [a,b]. Suppose that [itex]f_n \to f[/itex] and [itex]g_n \to g[/itex] uniformly on [a,b]. Prove that [itex]\frac{1}{g_n}[/itex] is defined for large n and [itex]\frac{f_n}{g_n} \to \frac{f}{g}[/itex] uniformly on [a,b]. Show that this is not true if [a,b] is replaced with (a,b).

2. Relevant equations

3. The attempt at a solution

The fact that [itex]g_n \to g[/itex] uniformly coupled with |g(x)| > 0 is enough for [itex]g_n \neq 0[/itex] for large enough n, which means that [itex]\frac{1}{g_n}[/itex] is defined. I'm stuck on the other part. The fact that it is seemingly not true for an open interval domain suggests that I need that the limit functions are bounded, but I've not read anything that says a continuous limit implies continuous sequence elements, even under uniform convergence. The converse is of course true, but I'm not sure about this direction of implication. I'm really just stuck on even where to begin trying to prove that [itex]|\frac{f_n}{g_n} - \frac{f}{g}| < \epsilon[/itex].

Any help whatsoever is greatly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Uniform convergence of a quotient

**Physics Forums | Science Articles, Homework Help, Discussion**