The problem with a physical interpretation is that analysis uses the assumption of continuity. In physics (here I mean nature and not the models of it that we use), there's not necessarily any such thing as an arbitrarily small epsilon or even an infinite sequence of functions. This may have something to do with why a few mathematicians reject the idea of an infinite set altogether. Physically, it's not clear that any such thing exists. Mathematically, there's nothing stopping us from thinking that way, and it can be useful in modeling physics because things do get very small. So, the experimental analogues of these things would involve throwing away the tail ends of the sequences arbitrarily far down the sequence and rounding any epsilon small enough to not make any measurable difference down to 0. But if you do that, uniform convergence doesn't really have a meaning any more because it's just a question of whether all the functions end up in a tube close enough to the function not to make any measurable difference. What might matter to you is how fast the functions end up in the tube, so that you don't have to wait forever for the sequence to end up there. Speed of convergence. So, these are some of the issues that you are confronted with if you are doing numerical analysis, rather than analysis proper. If your sequence doesn't converge fast enough to compute the answer, physically speaking, it's not going to help you. You can use it to reason theoretically, but you can't use it to compute the answers and results.
There are cases in which uniform convergence is relevant to physical problems, especially if you want to do it rigorously, but physically, it's hard to tell what's going on there physically. The issue is that continuous mathematics deals with whether things give you the right answer when extrapolated to infinitely fine distances and so on. That can be quite a different thing from sequences that are produced using some physical process. Practically speaking, you care about how fast things converge to the answer, rather than whether it's theoretically going to the answer.
If you ignore this kind of thing, basically, all you have to do is give you functions a physical interpretation, like temperature. You can't look at individual molecules because they will have different speeds. Temperature is more a measure of total kinetic energy, so all the energies are getting lumped together. So, you'd just have to say the temperature at each point is less than epsilon from the limiting temperature distribution. This makes sense in the theory of heat transfer, according to the mathematical model, but physically, it's going to break down if you zoom in enough because temperature is really a macroscopic concept that doesn't make sense microscopically for individual molecules.