WWGD said:
Understanding 4-manifolds can be done to a good degree by studying their intersection form, which describes properties of the intersection of 2-submanifolds-surfaces (actually, instead of the submanifolds, one uses their representatives in 2nd homology). You then have a partition of the intersection form, a bilinear form, into even and odd forms. This gives rise to conditions that allow , e.g., the existence of a quadratic form.
Here is a paraphrasing of a sketched construction of an exotic ##R^4## given in this paper
http://projecteuclid.org/download/pdf_1/euclid.jdg/1214437666
Donaldson apparently proved that for closed smooth simply connected 4 manifolds with negative definite intersection form, there is a basis of homology classes that diagonalizes the form. Interestingly, there is an example of a symmetric bilinear form over the integers, called ##E_8##, which is negative definite but not diagonalizable(over the integers). This form, by Donaldson's theorem, can not be the intersection form of a smooth simply connected 4 manifold.
One uses Donaldson's theorem on a manifold whose intersection form is ##E_8⊕E_8⊕H⊕H⊕H## where ##H## is the two dimensional form over ##Z## represented by the matrix that interchanges the two basis vectors. (Note that ##H## is not negative definite since over the rational numbers one can choose a basis so that it has the diagonal matrix, ##e_1⋅e_1 = -1,e_2⋅e_2 = 1##). This 4 manifold is an algebraic variety called the Kummer surface. It is the zeros of the homogeneous complex polynomial, ##z_1^4 + z_2^4 + z_3^4 + z_4^4## in the projective space, ##CP^3##. One shows that the three ##H##'s are represented by the homeomorphic image of a manifold,##N##, that can be cut out and then replaced with a 4 ball. The resulting manifold is simply connected and has intersection form, ##E_8⊕E_8## which is also not diagonalizable. By Donaldson's theorem this manifold cannot be smooth.
This, by itself, is interesting, an example of a manifold with no smooth structure.
This manifold , ##N##, is homeomorphic to the the triple connected sum of ##S^2## x ##S^2## with itself minus an open 4 ball. ( Notice that the intersection form of ##S^2## x ##S^2## is ##H##) One shows that its image,##X##, in the Kummer surface has an open neighborhood, ##U##, such that ##U-X##, is homeomorphic to ##S^3## x ##R##. However it can not be diffeomorphic to the standard ##S^3## x ##R## and so is an exotic ##S^3## x ##R##.
Again interesting. Freedman has a separate paper where he publishes this result.
Now that one has this exotic ##S^3## x ##R##, the author finds a diffeomorphic copy of it inside another manifold. Again this copy is an open neighborhood of the image of the triple connected sum of ##S^2## x ##S^2## with itself minus an open 4 ball inside this new manifold. In this case though after removing the triple connected sum minus a 4 ball, one is left with an open simply connected smooth 4 manifold with trivial second Z homology group. This is an exotic ##R^4##.