MHB Unit Circle Problems solve cosW=sin20, sinW=cos(-10), sinW< 0.5 and 1<tanW

AI Thread Summary
To solve the unit circle problems, the angle W for cos(W) = sin(20) is determined to be 70 degrees, as cos(70) equals sin(20). For sin(W) = cos(-10), W is found to be 100 degrees, since sin(100) equals cos(-10). The condition sin(W) < 0.5 identifies angles in the first and fourth quadrants, specifically below 30 degrees and above 150 degrees. For 1 < tan(W), W must be in the second or fourth quadrants, specifically between 45 degrees and 225 degrees. Using graphs of y = sin(x) and y = tan(x) can aid in visualizing these relationships.
Naidely
Messages
2
Reaction score
0
Without a calculator, find all solutions w between 0 and 360, inclusive, providing diagrams that support your results.

1) cosW=sin20

2) sinW=cos(-10)

3) sinW< 0.5

4) 1<tanW
 
Mathematics news on Phys.org
You titled this "unit circle problems". Have you drawn a unit circle? Do you know that, at each (x, y) point on the circle, x= cos(\theta) and y= sin(\theta)? Where is sin(20) on that circle? So for what angle is cos(W)= sin(20)?
 
yes I am aware that y= sin(theta) and x= cos(theta)
and yes I drew my unit circle
so sin20 is in the first quadrant but I am not sure how to import images here, if possible
and cos70= sin 20, I figured that out a few days ago, however I am stuck on 3 and 4
 
Instead of using a unit circle, for 3 and 4, draw the graphs of y= sin(x) and y= tan(x). Compare the graph of y= sin(x) with the graph of y= 1/2 and compare the graph of y= tan(x) with y= 1. You should know that sin(x)= 1/2 for \pi/6 radians (30 degrees) and 5\pi/6 radians (150 degrees) and that tan(x)= 1 for \pi/4 radians (45 degrees) and 5\pi/4 radians (225 degrees). (There is a nice graphing app at https://www.desmos.com/calculator.)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top