Units of the Gaussian Integers, Z[i]

Click For Summary
SUMMARY

The forum discussion centers on identifying the units of the Gaussian integers, denoted as $$\mathbb{Z}[i]$$. The units are definitively established as $$\pm 1$$ and $$\pm i$$, as demonstrated through the equations derived from the product of two Gaussian integers equating to one. The discussion emphasizes the necessity of showing that these are the only units by analyzing the conditions under which the product of two elements results in the multiplicative identity. The conclusion is that the only solutions for the pairs $(a_1, b_1)$ and $(a_2, b_2)$ lead to these four units.

PREREQUISITES
  • Understanding of Gaussian integers, $$\mathbb{Z}[i]$$
  • Familiarity with the concept of units in ring theory
  • Basic knowledge of complex numbers and their operations
  • Ability to manipulate and solve polynomial equations
NEXT STEPS
  • Study the properties of rings and integral domains in abstract algebra
  • Learn about the concept of isomorphism in algebraic structures
  • Explore the application of the norm function in Gaussian integers
  • Investigate other algebraic structures with units, such as $$\mathbb{Z}[\sqrt{-d}]$$
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in number theory and the properties of Gaussian integers.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In John Stillwell's book: Elements of Number Theory, Chapter 6 concerns the Gaussian integers, $$\mathbb{Z} = \{ a + bi \ | \ a, b \in \mathbb{Z} \}$$.

Exercise 6.1.1 reads as follows:

------------------------------------------------

"Show that the units of $$\mathbb{Z} $$ are $$ \ \pm 1, \ \pm i \ $$."

------------------------------------------------

Now an element $$a$$ of a ring or integral domain such as $$\mathbb{Z} $$ is a unit if there exists an element $$b$$ in $$\mathbb{Z} $$ such that $$ab = ba = 1$$.

So, then ... it is easy to demonstrate that $$ \ \pm 1, \ \pm i \ $$ are units of $$\mathbb{Z} $$ ... ... BUT ... ... how do we rigorously demonstrate that they are the only units ... ... presumably we proceed as follows:$$(a_1 + b_1 i)$$ is a unit of $$\mathbb{Z} $$ if there exists an element $$(a_2 + b_2 i)$$ such that:

$$(a_1 + b_1 i) (a_2 + b_2 i) = (a_2 + b_2 i) (a_1 + b_1 i) = 1 = 1 + 0 i $$ ... ... in which case, of course, ... ...

... $$(a_2 + b_2 i)$$ is also a unit ... ...So, I think, it follows that if we obtain all the solutions to the equation

$$(a_1 + b_1 i) (a_2 + b_2 i) = 1$$

we will have all the units ... and further will have demonstrated that they are the only units ... ...

Now ... ...

$$(a_1 + b_1 i) (a_2 + b_2 i) = 1 = 1 + 0 i $$

$$\Longrightarrow \ \ (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1) i = 1 + 0 i
$$

$$\Longrightarrow \ \ a_1a_2 - b_1b_2 = 1 \ $$ and $$ \ a_1b_2 + a_2b_1 = 0$$

... ... ?BUT ... where to from here ...

Can someone please help with this exercise by showing how to complete my approach ... OR ... by critiquing my approach and showing a better approach ...

Peter
 
Last edited:
Physics news on Phys.org
Take the sum of the squares of the last two equations to get

$$(a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2 = 1.$$

Expanding the left hand side yields the expression

$$a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2,$$

which factors as

$$ (a_1^2 + b_1^2)(a_2^2 + b_2^2).$$

Thus $(a_1^2 + b_1^2)(a_2^2 + b_2^2) = 1$. Since $a_1^2 + b_1^2$ and $a_2^2 + b_2^2$ are non-negative integers, the latter equation implies that $a_1^2 + b_1^2 = 1 = a_2^2 + b_2^2$. In particular, none of $a_1, a_2, b_1$ or $b_2$ can be greater than $1$. Hence, the only solutions for the pairs $(a_1, b_1)$ and $(a_2, b_2)$ are $(\pm 1, 0)$ and $(0, \pm 1)$. What does this mean for $\Bbb Z$?
 
Euge said:
Take the sum of the squares of the last two equations to get

$$(a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2 = 1.$$

Expanding the left hand side yields the expression

$$a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2,$$

which factors as

$$ (a_1^2 + b_1^2)(a_2^2 + b_2^2).$$

Thus $(a_1^2 + b_1^2)(a_2^2 + b_2^2) = 1$. Since $a_1^2 + b_1^2$ and $a_2^2 + b_2^2$ are non-negative integers, the latter equation implies that $a_1^2 + b_1^2 = 1 = a_2^2 + b_2^2$. In particular, none of $a_1, a_2, b_1$ or $b_2$ can be greater than $1$. Hence, the only solutions for the pairs $(a_1, b_1)$ and $(a_2, b_2)$ are $(\pm 1, 0)$ and $(0, \pm 1)$. What does this mean for $\Bbb Z$?

Thanks for the help Euge ...

You ask:

"Hence, the only solutions for the pairs $(a_1, b_1)$ and $(a_2, b_2)$ are $(\pm 1, 0)$ and $(0, \pm 1)$. What does this mean for $\Bbb Z$?"

Since $$(a_1, b_1) = (a_1 + b_1 i)$$ ... ...

... the solution $$(a_1, b_1) = (\pm 1, 0)$$ ..

... means that elements $$\pm 1 = \pm 1 + 0$$ are units of $\Bbb Z$ ...while, in the other case ...

Since $$(a_2, b_2) = (a_2 + b_2 i)$$ ... ...

... the solution $$(a_2, b_2) = (0, \pm 1)$$ ..

... means that elements $$ \pm i = 0 + \pm i $$ are units of $\Bbb Z$ ...

Is that the interpretation you were looking for?
Thanks once again for your help!

Peter
 
Peter said:
Thanks for the help Euge ...

You ask:

"Hence, the only solutions for the pairs $(a_1, b_1)$ and $(a_2, b_2)$ are $(\pm 1, 0)$ and $(0, \pm 1)$. What does this mean for $\Bbb Z$?"

Since $$(a_1, b_1) = (a_1 + b_1 i)$$ ... ...

... the solution $$(a_1, b_1) = (\pm 1, 0)$$ ..

... means that elements $$\pm 1 = \pm 1 + 0$$ are units of $\Bbb Z$ ...while, in the other case ...

Since $$(a_2, b_2) = (a_2 + b_2 i)$$ ... ...

... the solution $$(a_2, b_2) = (0, \pm 1)$$ ..

... means that elements $$ \pm i = 0 + \pm i $$ are units of $\Bbb Z$ ...

Is that the interpretation you were looking for?
Thanks once again for your help!

Peter


Well, not exactly. The pair $(a_1, b_1)$ is not equal to $a_1 + ib_1$, but corresponds to $a_1 + ib_1$. Likewise $(a_2,b_2)$ is not equal to $a_2 + ib_2$, but corresponds to $a_2 + ib_2$. So $(\pm 1, 0)$ corresponds to $\pm 1$ and $(0, \pm 1)$ corresponds to $\pm i$. The possible units in $\Bbb Z$ are therefore $\pm 1$ and $\pm i$. You've shown that $\pm 1$ and $\pm i$ are in fact units in $\Bbb Z$. Hence, these are the only units in $\Bbb Z$.
 
Euge said:
Well, not exactly. The pair $(a_1, b_1)$ is not equal to $a_1 + ib_1$, but corresponds to $a_1 + ib_1$. Likewise $(a_2,b_2)$ is not equal to $a_2 + ib_2$, but corresponds to $a_2 + ib_2$. So $(\pm 1, 0)$ corresponds to $\pm 1$ and $(0, \pm 1)$ corresponds to $\pm i$. The possible units in $\Bbb Z$ are therefore $\pm 1$ and $\pm i$. You've shown that $\pm 1$ and $\pm i$ are in fact units in $\Bbb Z$. Hence, these are the only units in $\Bbb Z$.
Thanks for the help Euge ...

Late here in Tasmania now ... will work through your post in the morning ...

Peter
 
Peter said:
Thanks for the help Euge ...

Late here in Tasmania now ... will work through your post in the morning ...

Peter

OK I think I understand ... we are dealing with an isomorphism, not an equality ...

Thank you for that, Euge ... these points are VERY important to me as I wish to gain an understanding of the mathematics involved ... not just get a 'solution' to an exercise ...

Thanks again,

Peter
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
22K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
15
Views
2K