A Unpacking Entropy Bounds and Their Violations

  • A
  • Thread starter Thread starter martinbn
  • Start date Start date
  • Tags Tags
    Bounds Entropy
martinbn
Science Advisor
Messages
4,239
Reaction score
2,292
There is something that is unclear to me, and because entropy bounds and their violations were discussed in the other thread, I thought it is a good opportunity to learn something. The problem is essentially a matter of impression. The statements go roughly in the following way: for a system with entropy ##S## and energy ##E##, which is contain in space of radius ##R## a certain inequality involving the above must hold. The problem for me is that the ##E## and the ##R## are never defined (well, I haven't seen it, it might very well be explained somewhere). And in a general relativistic setting they are meaningless.

So the question is how does one make the statements precise?
 
Physics news on Phys.org
The precise definition of the Bekenstein bound is that the entropy of an object with externally measured mass ##M## and enclosed within a surface with surface area ##A## must be less than or equal to the entropy of a black hole with mass ##M## and horizon area ##A##. The latter has a precise formula first derived by Hawking, which amounts to the entropy being the log of the horizon area divided by the Planck area.
 
The surface area is better than the vague ##R##, but it still depends on the space-like slice. And how is the mass defined?
 
martinbn said:
The surface area is better than the vague ##R##, but it still depends on the space-like slice.

Technically, yes, but for an asymptotically flat (i.e., isolated) system, one can define what amounts to a center of mass frame and use that to define the spacelike slices. Until we get a proper theory of quantum gravity, that's probably the best we're going to be able to do, since without one we simply don't know the precise microscopic degrees of freedom of a system including the spacetime geometry.

martinbn said:
how is the mass defined?

The ADM mass or the Bondi mass would be the simplest definitions, since they apply to any asymptotically flat system. I would lean towards the latter since it takes into account radiation emitted out to infinity.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top