Unraveling Linear Models: Solving n*Sum(XiYi) - Sum(XiYi)

  • Thread starter Thread starter retspool
  • Start date Start date
  • Tags Tags
    Linear Models
retspool
Messages
35
Reaction score
0
Linear models is the topic

And i believe my professor wrote this n*Sum(XiYi) - Sum(XiYi) = Sum(Xi - Xbar)(Yi - Ybar)

i was hoping if some one could tell me if this is true of if it is my bad in typing down.

If it is true then can some one please tell me how?

I've attached an image i'd appreciate it if someone could explain to me the last 3 steps.

Thanks
 

Attachments

  • IMAG0315.jpg
    IMAG0315.jpg
    27.3 KB · Views: 515
Physics news on Phys.org
And this too. I've written simplifies at the center of the paper, i don't know how they get the Betas.


Thanks
 

Attachments

  • IMAG0317.jpg
    IMAG0317.jpg
    22 KB · Views: 501
Let <x> and <y> denote the x and y averages (you called them Xbar Nd Ybar). You want S = sum{(xj -<x>)(yj - < y>): j=1...n}. The nth term, expanded out, is xj*yj - <x>*yj - <y>*xj + <x>*<y>. Now sum <x>*yj = <x>*sum yj = n*<x>*<y>, etc., so we end up with S = sum(xy) - 2*n*<x>*<y> + n*<x>*<y> = sum(xy) - n<x><y>.

RGV
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top