chisigma
Gold Member
MHB
- 1,627
- 0
chisigma said:Posted on 06 15 2012 on www.mathhelpforum.com by the member saravananbs and not yet solved…
… if x and y are independent random variable such that f(x)= e-x , x> or = 0 g(y)=3e-3y, y>or = 0 find the probability distribution function of z=x/y how it can be taken forward…
In the post #31 of this thread we found that, if X and Y are r.v. with p.d.f. $\displaystyle f_{x}(*)$ and $\displaystyle f_{y} (*)$ , then the r.v. $U=\frac{X}{Y}$ has p.d.f. ...
$\displaystyle f_{u}(u)= \int_{- \infty}^{+ \infty} |v|\ f_{x\ y} (u v,v)\ dv$ (1)
Now for $f_{x}(x)=e^{-x},\ x>0$ and $f_{y}(y)=3\ e^{-3\ y},\ y>0$ we have...
$\displaystyle f_{u}(u)= \int_{0}^{\infty} v\ e^{-(u+3)\ v}\ dv = \frac{3}{(u+3)^{2}},\ u>0$ (2)
Kind regards
$\chi$ $\sigma$