Upper bound of the relative error

Click For Summary

Discussion Overview

The discussion revolves around finding an upper bound for the relative error in a linear system represented by the equation $Ax=b$. Participants explore the implications of using approximate solutions and the condition number of the matrix involved. The context includes mathematical reasoning and error analysis.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants state that the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ is equal to 2, while others suggest it could be bounded by 2.001 without using the exact values of $x$ and $y$.
  • There is a proposal to use the condition number of the matrix $A$ to find the upper bound, expressed as $\text{cond}_1(A) = ||A||_1 \cdot ||A^{-1}||_1$.
  • Participants discuss the application of the inequality $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$, questioning whether a derangement of $b$ is present in the current context.
  • There is a clarification that $||\Delta x||$ represents the error in $x$ and $||\Delta b||$ represents the error in $b$.
  • One participant calculates the relative error as $\leq 2.0005$ using the discussed formula, prompting a confirmation from others.

Areas of Agreement / Disagreement

Participants express differing views on the upper bound of the relative error, with some asserting it is 2 and others suggesting it could be 2.001 or less. The discussion remains unresolved regarding the exact upper bound and the role of derangements.

Contextual Notes

There are unresolved questions about the assumptions regarding the values of $x$ and $y$, as well as the applicability of the condition number in this specific case.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
I am looking at the following exercise:
Let the linear system $Ax=b$ with $\begin{pmatrix}
2.001 & 2\\
2& 2
\end{pmatrix}$
,$b=\begin{bmatrix}
2.001 &2
\end{bmatrix}^T$ and y an approximate solution,so that $Ay-b=\begin{bmatrix}
0.001 &0
\end{bmatrix}^T$ .Find an upper bound of the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ .

I found that it is equal to 2,could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hello! :)
I am looking at the following exercise:
Let the linear system $Ax=b$ with $\begin{pmatrix}
2.001 & 2\\
2& 2
\end{pmatrix}$
,$b=\begin{bmatrix}
2.001 &2
\end{bmatrix}^T$ and y an approximate solution,so that $Ay-b=\begin{bmatrix}
0.001 &0
\end{bmatrix}^T$ .Find an upper bound of the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ .

I found that it is equal to 2,could you tell me if it is right?

Hi! ;)

The actual result is $\frac{||x-y||_{1}}{||x||_{1}} = 2$.
But assuming we're not supposed to use the solution for $x$ and $y$, I get an upper bound of $2.001$.
 
I like Serena said:
Hi! ;)

The actual result is $\frac{||x-y||_{1}}{||x||_{1}} = 2$.
But assuming we're not supposed to use the solution for $x$ and $y$, I get an upper bound of $2.001$.

How can we find the upper bound,without using the values of $x$ and $y$ ? :confused:
 
evinda said:
How can we find the upper bound,without using the values of $x$ and $y$ ? :confused:

By using the condition number of the matrix.
$$\text{cond}_1(A) = ||A||_1 \cdot ||A^{-1}||_1$$
Can it be that it is in your notes? :rolleyes:
 
I like Serena said:
By using the condition number of the matrix.
$$\text{cond}_1(A) = ||A||_1 \cdot ||A^{-1}||_1$$
Can it be that it is in your notes? :rolleyes:

To elaborate:
$$\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$$
 
I like Serena said:
To elaborate:
$$\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$$

We use $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$,if we have a derangment of $x$ and $b$.Right?But...is there a derangment of $b$ in this case?? :confused:
 
evinda said:
We use $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$,if we have a derangment of $x$ and $b$.Right?But...is there a derangment of $b$ in this case?? :confused:

Huh? How are derangements involved?? :confused:
What do you think a derangement is?

When $Ax=b$, then $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$ applies.
 
I like Serena said:
Huh? How are derangements involved?? :confused:
What do you think a derangement is?

When $Ax=b$, then $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$ applies.

Could I also do this like that: $\frac{||x-y||}{||x||}=\frac{||A^{-1}Ay-A^{-1}b||}{||x||}=\frac{||A^{-1}r||}{||x||}$ or would this be wrong?

- - - Updated - - -

I like Serena said:
Huh? How are derangements involved?? :confused:
What do you think a derangement is?

When $Ax=b$, then $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$ applies.

Don't we ue this formula if b and x change?? :confused:
 
evinda said:
Could I also do this like that: $\frac{||x-y||}{||x||}=\frac{||A^{-1}Ay-A^{-1}b||}{||x||}=\frac{||A^{-1}r||}{||x||}$ or would this be wrong?

That is correct... but it doesn't get us where we need to go...

Note that $||\Delta x|| = ||x - y||$, which is the error in $x$.
And that $||\Delta b|| = || Ay - b ||$, the error in $b$.
- - - Updated - - -
Don't we ue this formula if b and x change?? :confused:

Huh?? :confused:
 
  • #10
I like Serena said:
That is correct... but it doesn't get us where we need to go...

Note that $||\Delta x|| = ||x - y||$, which is the error in $x$.
And that $||\Delta b|| = || Ay - b ||$, the error in $b$.
I understand now! :) I applied the formula you said me and I found that the relative error is $\leq 2.0005$.Have you found the same??
 
  • #11
evinda said:
I understand now! :) I applied the formula you said me and I found that the relative error is $\leq 2.0005$.Have you found the same??

Yes! (Nod)
 
  • #12
I like Serena said:
Yes! (Nod)

Great!Thank you very much! :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K