Upper bound of the relative error

Click For Summary
SUMMARY

The discussion centers on finding the upper bound of the relative error in a linear system represented by the matrix $A = \begin{pmatrix} 2.001 & 2 \\ 2 & 2 \end{pmatrix}$ and vector $b = \begin{bmatrix} 2.001 \\ 2 \end{bmatrix}$. Participants confirm that the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ equals 2, with an upper bound of 2.001 derived from the condition number of the matrix. The formula used is $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$, which applies when considering perturbations in $x$ and $b$.

PREREQUISITES
  • Understanding of linear algebra concepts, particularly linear systems.
  • Familiarity with matrix norms, specifically $||\cdot||_1$ norm.
  • Knowledge of condition numbers in numerical analysis.
  • Ability to manipulate and interpret mathematical inequalities.
NEXT STEPS
  • Study the properties of matrix condition numbers and their implications on numerical stability.
  • Learn about different matrix norms and their applications in error analysis.
  • Explore perturbation theory in linear algebra to understand how small changes affect solutions.
  • Investigate the derivation and application of the relative error formula in various contexts.
USEFUL FOR

Students and professionals in mathematics, engineering, and computer science who are working with linear systems and seeking to understand error analysis and numerical stability.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
I am looking at the following exercise:
Let the linear system $Ax=b$ with $\begin{pmatrix}
2.001 & 2\\
2& 2
\end{pmatrix}$
,$b=\begin{bmatrix}
2.001 &2
\end{bmatrix}^T$ and y an approximate solution,so that $Ay-b=\begin{bmatrix}
0.001 &0
\end{bmatrix}^T$ .Find an upper bound of the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ .

I found that it is equal to 2,could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hello! :)
I am looking at the following exercise:
Let the linear system $Ax=b$ with $\begin{pmatrix}
2.001 & 2\\
2& 2
\end{pmatrix}$
,$b=\begin{bmatrix}
2.001 &2
\end{bmatrix}^T$ and y an approximate solution,so that $Ay-b=\begin{bmatrix}
0.001 &0
\end{bmatrix}^T$ .Find an upper bound of the relative error $\frac{||x-y||_{1}}{||x||_{1}}$ .

I found that it is equal to 2,could you tell me if it is right?

Hi! ;)

The actual result is $\frac{||x-y||_{1}}{||x||_{1}} = 2$.
But assuming we're not supposed to use the solution for $x$ and $y$, I get an upper bound of $2.001$.
 
I like Serena said:
Hi! ;)

The actual result is $\frac{||x-y||_{1}}{||x||_{1}} = 2$.
But assuming we're not supposed to use the solution for $x$ and $y$, I get an upper bound of $2.001$.

How can we find the upper bound,without using the values of $x$ and $y$ ? :confused:
 
evinda said:
How can we find the upper bound,without using the values of $x$ and $y$ ? :confused:

By using the condition number of the matrix.
$$\text{cond}_1(A) = ||A||_1 \cdot ||A^{-1}||_1$$
Can it be that it is in your notes? :rolleyes:
 
I like Serena said:
By using the condition number of the matrix.
$$\text{cond}_1(A) = ||A||_1 \cdot ||A^{-1}||_1$$
Can it be that it is in your notes? :rolleyes:

To elaborate:
$$\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$$
 
I like Serena said:
To elaborate:
$$\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$$

We use $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$,if we have a derangment of $x$ and $b$.Right?But...is there a derangment of $b$ in this case?? :confused:
 
evinda said:
We use $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$,if we have a derangment of $x$ and $b$.Right?But...is there a derangment of $b$ in this case?? :confused:

Huh? How are derangements involved?? :confused:
What do you think a derangement is?

When $Ax=b$, then $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$ applies.
 
I like Serena said:
Huh? How are derangements involved?? :confused:
What do you think a derangement is?

When $Ax=b$, then $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$ applies.

Could I also do this like that: $\frac{||x-y||}{||x||}=\frac{||A^{-1}Ay-A^{-1}b||}{||x||}=\frac{||A^{-1}r||}{||x||}$ or would this be wrong?

- - - Updated - - -

I like Serena said:
Huh? How are derangements involved?? :confused:
What do you think a derangement is?

When $Ax=b$, then $\frac{||\Delta x||_1}{||x||_1} \le \text{cond}_1(A) \frac{||\Delta b||_1}{||b||_1}$ applies.

Don't we ue this formula if b and x change?? :confused:
 
evinda said:
Could I also do this like that: $\frac{||x-y||}{||x||}=\frac{||A^{-1}Ay-A^{-1}b||}{||x||}=\frac{||A^{-1}r||}{||x||}$ or would this be wrong?

That is correct... but it doesn't get us where we need to go...

Note that $||\Delta x|| = ||x - y||$, which is the error in $x$.
And that $||\Delta b|| = || Ay - b ||$, the error in $b$.
- - - Updated - - -
Don't we ue this formula if b and x change?? :confused:

Huh?? :confused:
 
  • #10
I like Serena said:
That is correct... but it doesn't get us where we need to go...

Note that $||\Delta x|| = ||x - y||$, which is the error in $x$.
And that $||\Delta b|| = || Ay - b ||$, the error in $b$.
I understand now! :) I applied the formula you said me and I found that the relative error is $\leq 2.0005$.Have you found the same??
 
  • #11
evinda said:
I understand now! :) I applied the formula you said me and I found that the relative error is $\leq 2.0005$.Have you found the same??

Yes! (Nod)
 
  • #12
I like Serena said:
Yes! (Nod)

Great!Thank you very much! :)
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K