Use a calculator to evaluate the following powers

  • Thread starter Thread starter jai6638
  • Start date Start date
  • Tags Tags
    Calculator
AI Thread Summary
The discussion centers on evaluating powers with rational exponents using a calculator, specifically focusing on the expression 3^(sqrt(2)). The user shares calculated values for various rational exponents of 3 and notes that the value of 3^(sqrt(2)) is approximately 4.728804, which follows the last calculated rational exponent. Confusion arises regarding the use of logarithms and the proper definition of exponentials for irrational numbers, with an emphasis on the continuity of these definitions. The user acknowledges a mistake in their reasoning and seeks clarification on how to define exponentials for irrational numbers, highlighting the importance of sequences of rational numbers converging to irrational values. The conversation underscores the challenge of extending the concept of exponentiation from rational to irrational exponents.
jai6638
Messages
263
Reaction score
0
Hey... requested my professor to give me a few questions to enable me to improve my skills... am having problems solving them however and was hoping that you could guys could help me:

Q1) Use a calculator to evaluate the following powers. Round the results to five decimal placeS. Each of these powers has a rational exponent. Explain how you can use these powers to define 3^( sqrt of 2 ) which has an irrational exponent.

3^(14/10) = 4.65554
3^(141/100)=4.70697
3^(1414/10000)= 4.72770
3^(14142/10000)= 4.72873
3^(141421/100000)= 4.72878
3^(1414213/1000000)= 4.72880


3^( sqrt of 2 ) = 4.728804

so basically the value of 3^(sqrt of 2 ) comes after 3^(1414213/1000000)... hence, you could find the log of 3^14/10 which is .6679697566, then probably do the following : 3^(.667..+.667...+.667...+.667.. +.667 +.667.. +.667).

EDIT: damn .. what i did above doesn't make sense.. I am soo confused.! i do know that i can somehow use logs by finding the log of one value and then adding the solution multiple times to find the value of 3^ ( sqrt of 2 )

EDIT 2: realized that i posted in wrong forum.. my bad.. shall post in general math forum...
 
Last edited:
Physics news on Phys.org
Surely, this is not just an exercise in using a calculator! And this isn't a "word problem" so I'm not sure what you meant by that first sentence. The point of the exercise appears to me to be: You have already defined exponentials for any rational power by am/n= (am)1/n= ^n\sqrt{a^m}.
Now, how do you define exponentials for irrational numbers? Every irrational number is the limit of some sequence of rational numbers- that's exactly what you are doing when you say, for example, pi= 3.1415926... 3, 3.1, 3.14, 3.141, 3.14159, 3.141592, 3.1415926,... is a sequence of rational numbers (because they are terminating decimals which could be written as a fraction exactly as you did \sqrt{2})

DEFINING ax to be the limit of a^{r_n} where rn is a sequence of numbers converging to x is just defining ax to be continuous.

You are right: "you could find the log of 3^14/10 which is .6679697566, then probably do the following : 3^(.667..+.667...+.667...+.667.. +.667 +.667.. +.667)."

doesn't make sense. Yes, 314/10 is, approximately, 0.66790696... but it makes no sense to talk about 3 to a sum of that. Are you confusing the exponent
14/10= 1.4 with the whole thing: 314/10?
 
thanks much for your help.. appreciate it..
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top