julian
Science Advisor
Gold Member
- 860
- 365
Usingfresh_42 said:Do you know the limit?
\begin{align*}
\frac{\sin \pi z}{\pi z} = \prod_{n=1}^\infty \left( 1 - \frac{z^2}{n^2} \right)
\end{align*}So that
\begin{align*}
\prod_{n=3}^\infty \left( 1 - \frac{4}{n^2} \right) & = \lim_{z \rightarrow 2} \frac{\sin \pi z}{\pi z} \dfrac{1}{(1-z^2) \left( 1 - \dfrac{z^2}{2^2} \right)}
\nonumber \\
& = \frac{1}{1-2^2} \frac{1}{1 + \dfrac{2}{2}} \frac{1}{2} \lim_{z \rightarrow 2} \frac{\sin \pi z}{\pi} \dfrac{1}{1 - \dfrac{z}{2}}
\nonumber \\
& = - \frac{1}{12} \lim_{z \rightarrow 2} (-2) \dfrac{\dfrac{d}{dz} \sin \pi z}{\pi}
\nonumber \\
& = \frac{1}{6}
\end{align*}