PirateFan308
- 91
- 0
Homework Statement
Suppose that A is a 2x2 matrix with eigenvalues 0 and 1. Using diagonalization, show that A2 = A
The Attempt at a Solution
Let A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
Av=λv where v=\begin{pmatrix}x\\y\end{pmatrix} and x,y≠0
If λ=0 then ax+by=0 and cx+dy=0
If λ=1 then ax+by=1 and cx+dy=1
so Av-λv=0, then Av-λIv=0, then (A-λI)v=0. Since v≠0, then (A-λI)=0
so for λ=0 \begin{pmatrix}a&b\\c&d\end{pmatrix} and ax+by=0 and cx+dy=0
For λ=1 \begin{pmatrix}a-1&b\\c&d-1\end{pmatrix} and ax-x+by=1 and cx+dy-y=1
We must find two lin. ind. vectors such that we can create X where the first column of X is the first vector, and the second column of X is the second vector.
X^{-1}AX= \begin{pmatrix}0&0\\0&1\end{pmatrix}
If this is true, then X^{-1}A^{2}X= \begin{pmatrix}0&0\\0&1\end{pmatrix}
The problem is, I'm not quite sure how to prove any of this