Using Dimensional Analysis to derive an equation (Walter Lewin video)

Click For Summary

Discussion Overview

The discussion revolves around the use of dimensional analysis as presented in a Walter Lewin lecture, specifically regarding the time it takes for an object to fall from a height. Participants explore the theoretical underpinnings of the approach, the validity of the proposed equation, and the assumptions involved in dimensional analysis.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Conceptual clarification

Main Points Raised

  • One participant questions the logic behind the equation $$t = k{h}^\alpha{m}^\beta{g}^\gamma$$ and the assumptions made in selecting height, mass, and gravity as variables affecting time to fall.
  • Another participant expresses skepticism about the strength of Lewin's argument, suggesting that the choice of variables is poorly defined.
  • Some participants note that dimensional analysis is useful for checking calculations but may not provide definitive relationships without experimental validation.
  • A participant raises concerns about the potential for incorrect assumptions in dimensional analysis, emphasizing that while it can suggest relationships, it does not guarantee correctness.
  • There is a discussion about the nature of scientific theories, with one participant stating that no theory is ever proven "true," and all are subject to experimental scrutiny.

Areas of Agreement / Disagreement

Participants express differing views on the validity and application of dimensional analysis in this context. There is no consensus on the appropriateness of the assumptions made in the derivation of the equation or the strength of Lewin's approach.

Contextual Notes

Some participants highlight that dimensional analysis can simplify the process of determining relationships between variables but may overlook the need for additional terms or corrections that could arise from experimental data.

Chenkel
Messages
482
Reaction score
109
TL;DR
Mr Lewin's dimensional analysis
Hello everyone. I was watching the Walter Lewin lectures and I noticed in the talk he used something called dimension analysis to study the time it takes for an object to drop based on differing heights.



I'm 22:07 minutes into the video.

With some guess work on what's proportional to what, he wrote
$$t = k{h}^\alpha{m}^\beta{g}^\gamma$$Where k is a constant, h is the height, m is the mass, and g is the gravity.

He argued that the dimensional equivalents are $$[T]=[L]^\alpha[M]^\beta\frac {[L]^\gamma} {[T]^{2\gamma}}$$
He said that ##\alpha + \gamma = 0## and ##\beta = 0## and ##1 = -2\gamma## so ## \gamma = \frac {-1} {2} ## and ##\alpha = \frac {1} {2}##

Plugging this values into the first equation we have $$t=k\frac{\sqrt{h}}{\sqrt{g}}$$
I'm wondering about the theory of this approach, how do we know that the equation ##t=k{h}^\alpha{m}^\beta{g}^\gamma## is right? It seems the approach used by Mr Lewin requires a little bit of guess work, but I'm wondering what the logic behind the guess work is, how do we know for example that there isn't some addition or subtraction of certain multiplications happening on the right side, how can we assume this simple formula before solving for the exponents.

Any feed back on this would be helpful, thank you!
 
Physics news on Phys.org
I often use dimensional analysis to check my calculations.
What Mr Lewin is suggesting is a bit weak. How he came up with Mass, Gravity, and Height as candidate terms for time-to-fall is certainly very ill-defined.
 
  • Like
Likes   Reactions: Chenkel
robphy said:
Other possibly interesting sources:
I followed the compadre example of a ball being throw upward, I think there was a mistake in the example they gave.

They wrote $$[m^a(v^y)g^c] = (M)^a(\frac L T)^b(\frac L {T^2})^c = M^aL^{b-c}T^{-b-2c}$$

I believe they meant $$[m^a(v^y)g^c] = (M)^a(\frac L T)^b(\frac L {T^2})^c = M^aL^{b+c}T^{-b-2c}$$

I suppose they are trying to say ## h = km^a(v^y)g^c ## and solve for the exponents that will create a dimensionality of L

So are they guessing that the following equation is true? ## h = km^a(v^y)g^c ## it seems possible but I don't know how reasonable this assumption is; it feels easy for me to imagine getting wrong answers with dimensional analysis because something could have correct dimensions but incorrect formula, is this a reasonable concern?
 
Chenkel said:
Summary: Mr Lewin's dimensional analysis
I'm wondering about the theory of this approach, how do we know that the equation ##t=k{h}^\alpha{m}^\beta{g}^\gamma## is right? It seems the approach used by Mr Lewin requires a little bit of guess work, but I'm wondering what the logic behind the guess work is, how do we know for example that there isn't some addition or subtraction of certain multiplications happening on the right side, how can we assume this simple formula before solving for the exponents.
You can't know that for sure. Dimensional analysis is a very powerful technique; but it is primarily used when designing experiments (and checking the final answer).
That is, using dimensional analysis you can write down a relationship between different variables; based on this you can then figure out which measurements you need to do in order to determine the unknowns.
It could very well be that you need to subtract/add terms but if that is the case it should become obvious as you do the measurements.
Dimensional analysis can quite dramatically reduce the the number of measurements you need to do; but it can't replace experiments.
 
Chenkel said:
So are they guessing that the following equation is true? ... it seems possible but I don't know how reasonable this assumption is
Two points:
-It is the "simplest", and hence by Occam's Razor the most compelling, candidate.
-No theory is ever proven "true". They are all guesses, although "seeing " some overarching structure in a theory seems to bolster Occam, they are all subject to scrutiny via experiment. We call it science.
 
  • Like
Likes   Reactions: Chenkel and nasu

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
619
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
754
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K