A9876
- 16
- 0
Homework Statement
The expectation value of the time derivative of an arbitrary quantum operator \hat{O} is given by the expression:
d\langle\hat{O}\rangle/dt\equiv\langled\hat{O}/dt\rangle=\langle∂\hat{O}/∂t\rangle+i/hbar\langle[\hat{H},\hat{O}]\rangle
Obtain an expression for \langled\hat{L}x/dt+d\hat{L}y/dt\rangle where \hat{H}=\hat{H}0+μ0Bz\hat{L}z/hbar
Homework Equations
[\hat{L}x,\hat{L}y]=i*hbar\hat{L}z
[\hat{L}y,\hat{L}z]=i*hbar\hat{L}x
[\hat{L}z,\hat{L}x]=i*hbar\hat{L}y
[A,B]=AB-BA
The Attempt at a Solution
\langled\hat{L}x/dt+d\hat{L}y/dt\rangle=d\langle\hat{L}x+\hat{L}y\rangle
=\frac{1}{ih} d\langle[\hat{L}y,\hat{L}z]+[\hat{L}z,\hat{L}x]\rangle/dt
=\frac{1}{ih}\langle ∂[\hat{L}y,\hat{L}z]+[\hat{L}z,\hat{L}x]/∂t\rangle+\frac{i}{hbar}\langle[\hat{H},[\hat{L}y,\hat{L}z]+[\hat{L}z,\hat{L}x]]\rangle
I'm not sure how to continue on from this