Using the Baker-Campbell-Hausdorff Identity

  • Thread starter Mindstein
  • Start date
  • Tags
    Identity
J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}]] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}]]/4! + ...= \vec{J} + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i
  • #1
Mindstein
14
0

Homework Statement


Given that U = e[itex]^{-i*θ*\hat{n}*\vec{J}/hbar}[/itex]

Show that U[itex]^{†}[/itex][itex]\vec{J}[/itex]U = [itex]\hat{n}(\hat{n}*\vec{J}) - \hat{n}\times(\hat{n}\times\vec{J})cos(θ) + \hat{n}\times\vec{J}sin(θ)[/itex]

Homework Equations


The Baker-Campbell-Hausdorff Identity


The Attempt at a Solution


U[itex]^{†}[/itex][itex]\vec{J}[/itex]U = e[itex]^{-i*θ*\hat{n}*\vec{J}/hbar}[/itex][itex]\vec{J}[/itex]e[itex]^{i*θ*\hat{n}*\vec{J}/h_bar}[/itex]

U[itex]^{†}[/itex][itex]\vec{J}[/itex]U = [itex]\vec{J} + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}]+[i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}]]/2! + ...[/itex]

I guess I just need some help on whether or not I am headed in the right direction.
 
Last edited:
Physics news on Phys.org
  • #2


Thank you for your post. Your attempt at a solution looks like it is on the right track. However, I would suggest using the identity [A,[B,C]] = [B,[A,C]] + [C,[A,B]] instead of the Baker-Campbell-Hausdorff identity. This will simplify your calculations and make it easier to reach the desired result.

Using this identity, we can write U^{†}\vec{J}U as:

U^{†}\vec{J}U = \vec{J} + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}]]/2! + ...

= \vec{J} + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}]]/3! + ...

= \vec{J} + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*θ*\hat{n}*\vec{J}/hbar,[i*θ*\hat{n}*\vec{J}/hbar,\vec{J}] + [i*
 

1. What is the Baker-Campbell-Hausdorff Identity?

The Baker-Campbell-Hausdorff Identity (BCH) is a mathematical formula that allows for the simplification of exponential expressions involving non-commuting operators. It is commonly used in quantum mechanics and other areas of physics and mathematics.

2. How is the BCH Identity used in scientific research?

The BCH Identity is used in scientific research to simplify complicated mathematical expressions involving non-commuting operators. This allows for easier calculation and analysis of quantum mechanical systems and other complex systems in physics and mathematics.

3. What are the benefits of using the BCH Identity?

The main benefit of using the BCH Identity is that it allows for the simplification of complex mathematical expressions, making them easier to work with and analyze. This can save time and effort in scientific research, and also allows for a deeper understanding of the underlying principles and relationships within a system.

4. Are there any limitations to the use of the BCH Identity?

The BCH Identity is most effective when used with non-commuting operators, so it may not be as useful for systems that involve only commuting operators. Additionally, the formula can become increasingly complex for higher order terms, which may make it more difficult to use in certain situations.

5. How can someone learn more about the BCH Identity?

There are many resources available for learning more about the BCH Identity, including textbooks, online tutorials, and research articles. It is also helpful to have a strong understanding of mathematical concepts such as commutators and Lie algebras. Consult with a mentor or professor for guidance on how to best incorporate the BCH Identity into your research.

Similar threads

  • Advanced Physics Homework Help
Replies
0
Views
239
  • Introductory Physics Homework Help
Replies
2
Views
261
  • Advanced Physics Homework Help
Replies
3
Views
863
  • Introductory Physics Homework Help
Replies
12
Views
205
Replies
3
Views
912
  • Advanced Physics Homework Help
Replies
9
Views
1K
Replies
18
Views
3K
  • Advanced Physics Homework Help
Replies
1
Views
923
  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
967
Back
Top