Using the mathod of mathematical induction

cocobaby
Messages
9
Reaction score
0

Homework Statement


Let H be a ten- element set of potive integers ranged from 1 to 99. Prove that H has two disjoint subsets A and B so that the sum of the elements of A is equal to the sum of the elements of B.
 
Physics news on Phys.org
This is a pigeonhole question, not an induction question.
hint:

If you have 10 different numbers, how many different ways can you choose a subset of them? (to make a sum)and also,

what is the range of answers you can possibly get? (numbers chosen from 1-99 and up to a maximum of 10 numbers)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top