- #1

- 14

- 0

## Homework Statement

Let U have a U(0, 1) distribution.

a. Describe how to simulate the outcome of a roll with a die using U.

b. Define Y as follows: round 6U + 1 down to the nearest integer. What are

the possible outcomes of Y and their probabilities?

## Homework Equations

A continuous random variable has a uniform distribution on the interval [α, β] if its probability density function f is given by f(x) = 0 if x is not in [α, β] and

f(x) = 1 / (β − α) for α ≤ x ≤ β.

We denote this distribution by U(α, β).

## The Attempt at a Solution

I'm pretty sure I have part a. Generate a random number u, if:

u <= 1/6, the die is 1

1/6 < u <= 2/6, the die is 2

2/6 < u <= 3/6, the die is 3

3/6 < u <= 5/6, the die is 4

4/6 < u <= 5/6, the die is 5

5/6 < u, the die is 6

But I'm confused with part b. Obviously, 1, 2, 3, 4, 5, 6 and possibilities such that

P (Y = 1) = P (Y = 2) = P (Y = 3) = P (Y = 4) = P (Y = 5) = P (Y = 6) = 1/6

But isn't P(Y = 7) a possibility? But what is it's probability?