Validating the Limit of the Square Root Function

StarTiger
Messages
8
Reaction score
1
Could someone help me with this? I feel it should likely be easy, but I'm baffled anyway:

Homework Statement



Prove the validity of the limit lim x -> x_0 sqrt(x) = sqrt(x_0)

Homework Equations



use definition of limit

The Attempt at a Solution



Generally confused. I start with |sqrtx - sqrtx0| < epsilon
 
Physics news on Phys.org
You want to show that for any delta > 0, there is an epsilon so that |sqrt(x) - sqrt(x_0)| < eps when |x - x_0| < delta.

|sqrt(x) - sqrt(x_0)| = |sqrt(x) - sqrt(x_0)| *|sqrt(x) + sqrt(x_0)| /|sqrt(x) + sqrt(x_0)| = |x - x_0|/ *|sqrt(x) + sqrt(x_0)|

Without loss of generality, you can assume that delta is reasonably small, say less than 1. That puts x within 1 unit of x_0.

Can you work with |sqrt(x) + sqrt(x_0)| to find max and min values for it?
 
Okay...this is starting to make more sense now. Thanks for the tips. When I get it I'll try to upload what I have.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top