I Variant of Baker-Campbell-Hausdorff Formula

Click For Summary
The discussion centers on the challenge of simplifying the expression e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}, where X, Y, and Z are non-commuting matrices. The original poster seeks a closed form for this expression but struggles with the complexity of nested operators after applying the Baker-Campbell-Hausdorff (BCH) identity. Responses highlight the difficulty in manipulating the terms due to the lack of control over how the matrices commute with Z, suggesting that the problem may not have a straightforward solution. One suggestion involves exploring nilpotent matrices to identify potential patterns. Overall, the consensus is that simplifying the expression is highly complex due to the properties of the matrices involved.
thatboi
Messages
130
Reaction score
20
TL;DR
I want to evaluate ##e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}##
Hi all,
I was wondering if there was a clean/closed form version of the following expression: $$e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}$$
where ##X,Y,Z## are matrices that don't commute with each other. I know of the BCH identity ##e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + ...##
and I have used the identity to expand each term in my expression, but I cannot see a good way of cleaning up the result, I'm just left with a bunch of nested operators.
Any help would be appreciated, thanks!
 
Mathematics news on Phys.org
thatboi said:
TL;DR Summary: I want to evaluate ##e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}##

Hi all,
I was wondering if there was a clean/closed form version of the following expression: $$e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}$$
where ##X,Y,Z## are matrices that don't commute with each other. I know of the BCH identity ##e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + ...##
and I have used the identity to expand each term in my expression, but I cannot see a good way of cleaning up the result, I'm just left with a bunch of nested operators.
Any help would be appreciated, thanks!
No way. What you are basically asking for is how to move the garbage on the left through ##Z## in order to annihilate the garbage on the right. Since you allow anything to happen by changing the sides of ##Z##, there is no way to make predictions.
 
fresh_42 said:
No way. What you are basically asking for is how to move the garbage on the left through ##Z## in order to annihilate the garbage on the right. Since you allow anything to happen by changing the sides of ##Z##, there is no way to make predictions.
Could you elaborate on what you mean by "Since you allow anything to happen by changing the sides of ##Z## "?
 
thatboi said:
Could you elaborate on what you mean by "Since you allow anything to happen by changing the sides of ##Z## "?
You have certain combined expressions in ##X## and ##Y## on the left and no control over how they commutate with ##Z##. ##e^X## and ##Z## aren't even in the same space.

I would approach this problem with nilpotent matrices of low degree, say the three-dimensional Heisenberg algebra for instance. Then with matrices of a bit increased degree of nilpotency. Maybe you can find a pattern. I will see if I can find something in the books.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
204
  • · Replies 26 ·
Replies
26
Views
697
Replies
3
Views
460
  • · Replies 14 ·
Replies
14
Views
1K
Replies
5
Views
2K