• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Varley Bridge

  • Thread starter David J
  • Start date

David J

Gold Member
137
12
Thread moved from the technical forums, so no Homework Template is shown
I am currently working on a module for the practical application of DC bridges. The particular problem I have at the minute involve "show that" questions.
The first question is in 3 parts and reads as follows: -
A Varley Bridge is connected to a faulty three core copper cable by two identical copper leads of resistance ##R_l##
(a)
Show for the initial reading (connection to earth) that;

##2R_x = 2R_c - R_i ##.........................(1)

Where ##R_c## is the resistance of the cable core
##R_i## is the initial reading of the bridge
##R_x## is the cable resistance to the fault from the bridge

Then, for the final reading show that;

##2R_c = R_f - 2R_l##...........................(2)

Where ##R_l## is the lead resistance
and ##R_f## is the final reading resistance

Then by substituting (2) into (1) and re arranging the equation, show:

##R_x +R_l = \frac {R_f - R_i}{R_f}(R_c + R_l)##

My answers

For the first part I created this answer:-

The Varley Bridge is balanced when: -

##\frac{R_a}{R_b}=\frac{(2R_c - R_x)}{R_x+R_i}##

##R_a = R_b## so ##\frac{R_ a}{R_b}## must = 1

So 1 = ##\frac{(2R_c - R_x)}{R_x + R_i}## so ##R_x +R_i = 2R_c - R_x##

So ##R_x + R_x +R_i = 2R_c## or ##2R_x +R_i =2R_c##

So ##2R_c =R_f + 2R_l## hence proven

For the second part I created this answer:-

##2R_c## + the Ohmic value of the leads, needs to = ##\frac{R_a}{R_ b}##

So ##\frac{R_a}{R_b} =\frac{2R_c + 2R_l}{R_f}## So ##R_f = 2R_c + 2R_l##

So ##2R_c = R_f + 2R_l## hence proven

Could someone please comment on the 2 answers I have provided above and let me know if the approach is correct. I think I have shown how both equations are created as requested in the question.

Regarding the 3rd part of the question I have struggled a bit with this and this is where I require some assistance. I have been shown an answer but I dont understand how it is achieved.

I know equation 1 = ##2R_x =2R_c - R_i##
I know equation 2 = ##2R_c =R_f -2R_l##

##2R_c =R_f - 2R_l \Rightarrow R_x + R_l = 2R_c - R_i - R_x + R_l##.................(3) I do not understand how this is created ???
##2R_x =2R_c - R_i \Rightarrow R_c + R_l = 2R_x + R_i - R_c + R_l##.................(4) I do not understand how this is created ???
I dont understand how ##R_x + R_l## and ##R_c + R_l## are included in equations 3 and 4. The first thing I need to understand is how we get to equations (3) and (4)

Once I understand the above I think I need to divide equation 3 by equation 4 so:-

##\frac{R_x + R_l}{R_c +R_l}=\frac{(2R_c -R_i)-R_x+R_l}{(2R_x +R_i)-R_c +R_l}##

Which can equate to ##\frac{R_x + R_l}{R_c + R_l} = \frac{2R_x -R_x +R_l}{2R_c -R_c +R_l}##

At this point I am stuck and need a little bit of guidance.

Would someone be able to comment on the first 2 answers above and also advise on the answer to part 3 so far, am I on the right track or not ? If not where have I gone wrong, etc

Appreciated as always

Thanks

Dave
 
383
111
Sorry, this could be better:
upload_2018-7-18_22-44-4.png
 

Attachments

David J

Gold Member
137
12
Hi, thanks for helping with this. I know that the reading on the Galvanometer needs to be zero so looking at the diagram above the variable resistance ##R_i , R_f## for reading 2 will play some part in the answer. My problem is trying to show that ##R_x +R_l = \frac {R_f - R_i}{R_f}(R_c + R_l)##

This is whats confusing me
 
383
111
You almost found it:
From equation 2*Rc=Rf−2RL you'll get (Rc+RL)/Rf=1/2
Find now Rx + RL
 
383
111
2*Rx=2*Rc-Ri ?
2*RL=Rf-2*Rc ?
 

David J

Gold Member
137
12
I know equation 1 = ##2R_x =2R_c - R_i##
I know equation 2 = ##2R_c =R_f -2R_l##

##2R_c =R_f - 2R_l \Rightarrow R_x + R_l = 2R_c - R_i - R_x + R_l##..........(3) I do not understand how this is created ???
##2R_x =2R_c - R_i \Rightarrow R_c + R_l = 2R_x + R_i - R_c + R_l##........(4) I do not understand how this is created ???
I dont understand how ##R_x + R_l## and ##R_c + R_l## are included in equations 3 and 4. The first thing I need to understand is how we get to equations (3) and (4)

Can you advise on the above please ?? I feel if I can understand this I can get this,
 
383
111
equation 1 = 2Rx=2Rc−Ri
equation 2 = 2Rc=Rf−2Rl then 2RL=Rf-2Rc
2(Rx+Rl)=Rf-Ri then Rx+Rl=(Rf-Ri)/2=(Rf-Ri)x1/2
But from equation 2*Rc=Rf−2RL you'll get (Rc+RL)/Rf=1/2 so:
Rx+Rl=(Rf-Ri)/2=(Rf-Ri)x1/2=(Rf-Ri)*(Rc+RL)/Rf=(Rf-Ri)/Rf*(Rc+RL)
 

David J

Gold Member
137
12
I think I have managed to understand this. This is my answer: -

equation 1 is ##2R_x =2R_c -R_i##
equation 2 is ##2R_c = R_f -2R_l##

Substitute 2 into 1 gives me

##2R_x =R_f -R_i -2R_l##

so ##0.5(R_f - R_i) = R_x + R_l ##

Now ##2R_c =R_f - 2R_l## can be re arranged as ##0.5R_f = R_c + R_ l##

So ##\frac{R_x + R_l}{R_c + R_l} = \frac{0.5(R_f - R_i)}{0.5 R_f} or \frac{R_f -R_i}{R_f}##

So ##R_x + R_l = \frac{R_f - R_I}{R_f} * (R_c +R_l)##
 
Last edited:

David J

Gold Member
137
12
##R_x + R_l = \frac{R_f - R_i}{R_f} * (R_c +R_l)##

Moving on from the above equation I have to show that: -

##R_x = \frac{R_f -R_i}{R_f}*R_c -\frac{R_l - R_i}{R_f}##

So

##R_x + R_l = \frac{R_f - R_i}{R_f} * (R_c -R_l)##

Step 1 ##R_x + R_l = \frac{(R_f R_c+R_f R_l) - (R_i R_c - R_i R_l)}{R_f}##

Step 2 ##R_x + R_l = \frac{(R_f R_c+R_f R_l) - (R_i R_c - R_i R_l)}{R_f}##


Step 3 ##R_x = \frac{(R_f R_c+R_f R_l) - (R_i R_c - R_i R_l)}{R_f}-R_l##

Step 4 ##R_x = \frac{R_f R_c - R_i R_c - R_i R_l}{R_f}##

Step 5 ##R_x = \frac{R_c(R_f - R_i)}{R_f} - \frac{R_i R_l}{R_f}##

I think this is correct, I would just like confirmation and if this is not correct please point out my mistake.

Thanks again
 
Last edited:
383
111
Rx=(Rf-Ri)/Rf*Rc+[(Rf-Ri)/Rf-1]*Rl
 

David J

Gold Member
137
12
what does this relate to please?

##R_x = \frac{(R_f - R_i)}{R_f}*R_c +\left[\frac{(R_f -R_i)}{R_f-1}\right]*R_l##

Should this arrangement have been included in the above answer?
 
Last edited:
383
111
Rx=(Rf-Ri)/Rf*Rc+(Rf-Ri)/Rf*Rl-Rl=(Rf-Ri)/Rf*Rc+[(Rf-Ri)/Rf-1]*Rl
 
383
111
I'm sorry I'm late. It seems your result is very correct.:smile:
 

David J

Gold Member
137
12
Hello again, thanks for your help with this. I have submitted my assignment today and will close this post.

Much appreciated

thanks
 

Want to reply to this thread?

"Varley Bridge" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top