Vector cross product identity proof

notReallyHere
Messages
3
Reaction score
0

Homework Statement




\bigtriangledown\times\\(v\times w)= v(\bigtriangledown\cdot w) - w(\bigtriangledown\cdot v)+ (v\cdot\bigtriangledown)w - (w\cdot\bigtriangledown) v


I've tried expanding left side and get
[v1(dw2/dy+dw3/dz)-w1(dv2/dy+dv3/dz)]i +
[v2(dw3/dz+dw1/dx)-w2(dv3/dz+dv1/dx)]j +
[v3(dw1/dx+dw2/dy)-w3(dv2/dy+dv1/dx)]k

is this right way to start it? another way to attack it?
 
Physics news on Phys.org
notReallyHere said:

Homework Statement




\bigtriangledown\times\\(v\times w)= v(\bigtriangledown\cdot w) - w(\bigtriangledown\cdot v)+ (v\cdot\bigtriangledown)w - (w\cdot\bigtriangledown) v


I've tried expanding left side and get
[v1(dw2/dy+dw3/dz)-w1(dv2/dy+dv3/dz)]i +
[v2(dw3/dz+dw1/dx)-w2(dv3/dz+dv1/dx)]j +
[v3(dw1/dx+dw2/dy)-w3(dv2/dy+dv1/dx)]k

is this right way to start it? another way to attack it?

You can try the following: First note that \nabla is a differential operator, so its action on the product is the sum of actions on each factor

\bigtriangledown\times\\(v\times w)= \bigtriangledown\times\\(V\times w) + \bigtriangledown\times\\(v\times W)

(I used capital letters to denote the factor on which \nabla acts in each term. The other factor can be treated as a constant). Then use the vector identity

a \times( b \times c) = b(a \cdot c) - c (a \cdot b)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top