MHB Vector Proofs: Constant Magnitude and Orthogonality in Finite Dimensional Spaces

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Proof Vector
Dustinsfl
Messages
2,217
Reaction score
5
Prove that if $\mathbf{v}(t)$ is any vector that depends on time but which has a constant magnitude, then $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$.
Prove the converse.

We are working with finite dimensional vector spaces.
Let $\mathbf{v}(t) = \sum\limits_{i = 1}^{n}c_iv(t)_i$.
Then
$$
\lVert\mathbf{v}(t)\rVert = \sqrt{\sum\limits_{i = 1}^{n}c_i^2} = \alpha\in\mathbb{C}.
$$
How do I defined $\dot{\mathbf{v}}(t)$?
 
Physics news on Phys.org
Hello dwsmith. (Handshake) You don't need to work out the inner product, there is a simpler way.

Since $\mathbf{v}(t)$ has constant magnitude this means $|\mathbf{v}(t)| = c$, for some $c \in \mathbb{R}^+$. Therefore $|\mathbf{v}(t)|^2 = c^2$, but $|\mathbf{v}(t)|^2 = \mathbf{v}(t) \cdot \mathbf{v}(t) = c^2$.

Deriving both sides yields

$$\mathbf{v}' (t) \cdot \mathbf{v}(t) + \mathbf{v}(t) \cdot \mathbf{v}' (t) = 0,$$

but the left side is simply $2 \mathbf{v}'(t) \cdot \mathbf{v}(t)$. We conclude that $\mathbf{v}' (t) \cdot \mathbf{v} (t) = 0$ and $\mathbf{v}'(t)$ is orthogonal to $\mathbf{v}(t)$.

In order to work the converse you simply reverse operations. Hope this has helped! (Yes)

Fantini
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top