I believe the term "vector field" can be misleading. It refers to a vector valued function that outputs an n-dimensional vector to every point in some n-dimensional space. So when the word "field" is used in that context, it better conceptualized as a force field (like gravity in 3 dimensions), not a field of scalars, as described in the current replies.
With that being said, no, a field and a vector space are not the same thing. A vector space is a "space" that includes all possible vectors, in n-dimensions, over some field of scalars. These vectors can be added and subtracted, but not multiplied because they are not numbers! They use numbers (real numbers are an example of a field) to give them some magnitude and direction in n-dimensional space... But a vector field, as described above, actually "reveals" (for lack of a better term) whatever vectors in the vector space that are outputted by the vector valued function that is that vector field.