Vector-Valued Function for x+y+z=6: Homework Solution

  • Thread starter Thread starter aaronfue
  • Start date Start date
  • Tags Tags
    Function Vector
aaronfue
Messages
118
Reaction score
0

Homework Statement



I would appreciate it if someone could verify my answer.

Find a vector-valued function that represents the plane x+y+z=6.

2. The attempt at a solution

r(u,v) = ui + vj + (6-u-v)k

Thanks!
 
Physics news on Phys.org
aaronfue said:

Homework Statement



I would appreciate it if someone could verify my answer.

Find a vector-valued function that represents the plane x+y+z=6.

2. The attempt at a solution

r(u,v) = ui + vj + (6-u-v)k

Thanks!

That should do it. u+v+(6-u-v)=6.
 
Dick said:
That should do it. u+v+(6-u-v)=6.

Sweet! Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top