Vectorial kinematic in cartesian and polar system/notanion

In summary, the conversation is about the concept of vectorial kinematics and how it can be studied without relying on formulas. The speaker expresses difficulty in finding a comprehensive explanation in any book and asks for help in understanding the geometric and algebraic connections between various vector concepts. They share two helpful explanations but still have doubts about one specific topic. A general derivation using vectors is provided, but the speaker is still unsure about why their own equation is incorrect.
  • #1
Jhenrique
685
4
I was trying to study vectorial kinematics in all its fullness, without decorating formulas, only deducting all vectorially through mathematical definitions. I felt much difficulty, because it's a puzzle of many pieces and I not found a embracing explanation in any book. Someone could explain to me how the concepts of position vector, displacement vector, velocity vector, angular velocity vector, radial velocity vector, acceleration vector, angular acceleration vector and radial acceleration vector are connected geometrically and algebraically? Or, at least, could indicate me to some book that discusses these questions with clarity?
 
Science news on Phys.org
  • #2
I found 2 excelents explanations!
http://en.wikipedia.org/wiki/Equations_of_motion#General_planar_motion
http://en.wikipedia.org/wiki/Centripetal_force#General_planar_motion
http://en.wikipedia.org/wiki/Vector...ates#Second_time_derivative_of_a_vector_field

However, still remained one doubt, in this topic (http://en.wikipedia.org/wiki/Centrifugal_force_(fictitious)#Acceleration) there is the follow deduction:

fd210a5722c5cfbd937aa2451527531d.png



But I don't understood how
[tex]\frac{\mathrm{d} }{\mathrm{d} t}\left (\vec{\omega } \times \vec{r} \right )[/tex]
can be equal to
[tex]\frac{\mathrm{d} \vec{\omega }}{\mathrm{d} t}\times \vec{r}+2\vec{\omega }\times\left [ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]+ \vec{\omega } \times (\vec{\omega }\times \vec{r})[/tex]
How? Why?
 
  • #3
Jhenrique said:
I found 2 excelents explanations!
http://en.wikipedia.org/wiki/Equations_of_motion#General_planar_motion
http://en.wikipedia.org/wiki/Centripetal_force#General_planar_motion
http://en.wikipedia.org/wiki/Vector...ates#Second_time_derivative_of_a_vector_field

However, still remained one doubt, in this topic (http://en.wikipedia.org/wiki/Centrifugal_force_(fictitious)#Acceleration) there is the follow deduction:

fd210a5722c5cfbd937aa2451527531d.png



But I don't understood how
[tex]\frac{\mathrm{d} }{\mathrm{d} t}\left (\vec{\omega } \times \vec{r} \right )[/tex]
can be equal to
[tex]\frac{\mathrm{d} \vec{\omega }}{\mathrm{d} t}\times \vec{r}+2\vec{\omega }\times\left [ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]+ \vec{\omega } \times (\vec{\omega }\times \vec{r})[/tex]
How? Why?

$$

\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) \right] + \vec{\omega } \times \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] \right]

+ \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \vec{\omega } \times \vec{r} \right) \right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \left[ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \right] \times \vec{r}

+ \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \times \vec{r}

+ 2 \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

$$
 
  • #4
voko said:
$$

\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) \right] + \vec{\omega } \times \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

$$

What? Why plus ω×([dr/dt] + ω×r)?

My equation results a different result:
[tex]\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} }{\mathrm{d} t} \left(\vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} \vec{\omega}}{\mathrm{d} t} \times \vec{r}+\vec{\omega} \times \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} = [\vec{a}] + \vec{\alpha }\times \vec{r}+\vec{\omega}\times\vec{v}[/tex]
 
  • #5
Because for any vector ##\vec x##, $$ {\mathrm{d} \vec x \over \mathrm{d} t} = \left[ {\mathrm{d} \vec x \over \mathrm{d} t} \right] + \vec \omega \times \vec x , $$ where the square brackets denote differentiation in the co-rotating frame.

In this case we have $$ \vec x= \vec v = {\mathrm{d} \vec r \over \mathrm{d} t} = \left[ {\mathrm{d} \vec r \over \mathrm{d} t} \right] + \vec \omega \times \vec r , $$ so that formula is applied twice.
 
  • #6
voko said:
Because for any vector ##\vec x##, $$ {\mathrm{d} \vec x \over \mathrm{d} t} = \left[ {\mathrm{d} \vec x \over \mathrm{d} t} \right] + \vec \omega \times \vec x , $$ where the square brackets denote differentiation in the co-rotating frame.

In this case we have $$ \vec x= \vec v = {\mathrm{d} \vec r \over \mathrm{d} t} = \left[ {\mathrm{d} \vec r \over \mathrm{d} t} \right] + \vec \omega \times \vec r , $$ so that formula is applied twice.

Now I understood! So, which is correct expression to r/dt² ? Is a + α×r + ω×v or a + α×r + 2ω×v + ω×(ω×r) ? My equation in post #4 is incorrect/incomplete?
 
  • #7
The correct formula is given in #3. It is identical to the one in Wikipedia.
 
  • Like
Likes 1 person
  • #9
You asked for a general derivation using vectors. It was given to you. Is there something you do not understand about the derivation?
 
  • #10
voko said:
You asked for a general derivation using vectors. It was given to you. Is there something you do not understand about the derivation?

In actually, yes! Because the 2 derivations below seems be correct...
voko said:
$$

\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) \right] + \vec{\omega } \times \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] \right]

+ \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \vec{\omega } \times \vec{r} \right) \right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \left[ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \right] \times \vec{r}

+ \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \times \vec{r}

+ 2 \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

$$

Jhenrique said:
[tex]\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} }{\mathrm{d} t} \left(\vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} \vec{\omega}}{\mathrm{d} t} \times \vec{r}+\vec{\omega} \times \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} = [\vec{a}] + \vec{\alpha }\times \vec{r}+\vec{\omega}\times\vec{v}[/tex]

I know that your answer is correct, but I don't know why mine isn't. I followed the sum rule and the product rule correctly, not should have two different results for same equation.
 
  • #11
In your derivation, you assumed that $$ \mathrm d \over \mathrm d t $$ and $$ \left[ \mathrm d \over \mathrm d t \right] $$ are the same thing. They are not, as shown in #5.
 

1. What is vectorial kinematics?

Vectorial kinematics is a branch of physics that studies the motion of objects in terms of vectors, which have both magnitude and direction. It involves analyzing the position, velocity, and acceleration of an object in order to understand its motion.

2. What is the difference between cartesian and polar coordinate systems?

Cartesian coordinate systems use x and y axes to represent the position of a point in a 2D space, while polar coordinate systems use a radius and angle to represent the position of a point in a 2D space. In vectorial kinematics, both coordinate systems can be used to describe the motion of an object.

3. How do you convert between cartesian and polar coordinates?

To convert from cartesian to polar coordinates, you can use the equations r = √(x^2 + y^2) and θ = tan^-1 (y/x), where r is the radius and θ is the angle. To convert from polar to cartesian coordinates, you can use the equations x = r cos(θ) and y = r sin(θ).

4. What is a non-antion vector?

A non-antion vector is a vector that has a direction but no specific starting point. It is often used to represent forces or velocities in physics, where the starting point is not as important as the direction and magnitude of the vector.

5. How is vectorial kinematics used in real-world applications?

Vectorial kinematics is used in many fields, including engineering, robotics, and video game programming. It is used to analyze and predict the motion of objects in various scenarios, such as the trajectory of a projectile, the movement of a car on a curved road, or the flight path of a drone. It is also essential in understanding and simulating complex physical systems, such as fluid dynamics and orbital mechanics.

Similar threads

  • Calculus and Beyond Homework Help
Replies
24
Views
1K
Replies
7
Views
4K
  • General Math
Replies
7
Views
2K
Replies
14
Views
2K
  • Science and Math Textbooks
2
Replies
46
Views
8K
Replies
86
Views
4K
  • Classical Physics
Replies
7
Views
1K
  • Astronomy and Astrophysics
Replies
1
Views
605
  • Introductory Physics Homework Help
2
Replies
37
Views
3K
  • Introductory Physics Homework Help
Replies
6
Views
3K
Back
Top