Velocity in Proper Time: Relativistic Acceleration Equation

nomadreid
Gold Member
Messages
1,748
Reaction score
243
Two questions, based on the same situation: in
http://physics.stackexchange.com/questions/34204/relativistic-acceleration-equation
(question A) it is mentioned that, for an object with a constant acceleration g_{M}, and with \tau_{0} =1/g_{M} , after proper time \tau, the coordinates are
x= cosh(\tau/\tau_{0})
t = sinh(\tau/\tau_{0})
and that therefore
v = tanh(\tau/\tau_{0})
My first reaction was that this should be coth (position/time, cosh/sinh), but then I figured that tanh comes from v=dx/dt =d(cosh ...)/d(sinh ...) = sinh.../cosh... Is this correct?
(question B) However, this is the end velocity after d\tau. So, I presume one would need to call this v= dv. If we want the end velocity after a finite amount of time, I presume integration would be in order, but since it is the rapidities that add rather than the velocities, I am not sure how this integration would look. Or perhaps there is a simpler method to find the coordinate velocity after finite proper time \tau with constant acceleration g_{M}? (Starting at (0,0).)
I would be grateful for anyone who can untangle me from this mess.
 
Physics news on Phys.org
nomadreid said:
My first reaction was that this should be coth (position/time, cosh/sinh), but then I figured that tanh comes from v=dx/dt =d(cosh ...)/d(sinh ...) = sinh.../cosh... Is this correct?
Yes

nomadreid said:
(question B) However, this is the end velocity after d\tau. So, I presume one would need to call this v= dv. If we want the end velocity after a finite amount of time, I presume integration would be in order, but since it is the rapidities that add rather than the velocities, I am not sure how this integration would look.
No, v = dx/dt, as you've calculated it, is the desired instantaneous coordinate velocity at time τ.
 
Thanks, Bill_K
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top