Velocity in Proper Time: Relativistic Acceleration Equation

nomadreid
Gold Member
Messages
1,748
Reaction score
243
Two questions, based on the same situation: in
http://physics.stackexchange.com/questions/34204/relativistic-acceleration-equation
(question A) it is mentioned that, for an object with a constant acceleration g_{M}, and with \tau_{0} =1/g_{M} , after proper time \tau, the coordinates are
x= cosh(\tau/\tau_{0})
t = sinh(\tau/\tau_{0})
and that therefore
v = tanh(\tau/\tau_{0})
My first reaction was that this should be coth (position/time, cosh/sinh), but then I figured that tanh comes from v=dx/dt =d(cosh ...)/d(sinh ...) = sinh.../cosh... Is this correct?
(question B) However, this is the end velocity after d\tau. So, I presume one would need to call this v= dv. If we want the end velocity after a finite amount of time, I presume integration would be in order, but since it is the rapidities that add rather than the velocities, I am not sure how this integration would look. Or perhaps there is a simpler method to find the coordinate velocity after finite proper time \tau with constant acceleration g_{M}? (Starting at (0,0).)
I would be grateful for anyone who can untangle me from this mess.
 
Physics news on Phys.org
nomadreid said:
My first reaction was that this should be coth (position/time, cosh/sinh), but then I figured that tanh comes from v=dx/dt =d(cosh ...)/d(sinh ...) = sinh.../cosh... Is this correct?
Yes

nomadreid said:
(question B) However, this is the end velocity after d\tau. So, I presume one would need to call this v= dv. If we want the end velocity after a finite amount of time, I presume integration would be in order, but since it is the rapidities that add rather than the velocities, I am not sure how this integration would look.
No, v = dx/dt, as you've calculated it, is the desired instantaneous coordinate velocity at time τ.
 
Thanks, Bill_K
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top