Velocity of center of mass of spinning disk

AI Thread Summary
A solid uniform disk with a mass of 19.0 kg and a radius of 0.7 m is subjected to a constant force of 35.0 N via a string wrapped around its rim on a frictionless surface. The initial calculations mistakenly applied the wrong acceleration, leading to an incorrect speed of the center of mass after moving 6 m. The correct application of Newton's second law reveals that the acceleration is 1.667 m/s², resulting in a final speed of 5.1 m/s after the disk travels the specified distance. The discussion emphasizes the importance of separating linear and angular motions when analyzing forces and torques. Understanding these principles is crucial for accurately determining the velocity of the center of mass in such scenarios.
atlarge
Messages
3
Reaction score
0
A solid uniform disk of mass 19.0 kg and radius 70.0 cm (.7 m) is at rest FLAT on a frictionless surface. A string is wrapped around the rim of the disk and a constant force of 35.0 N is applied to the string. The string does not slip on the rim. The string is being pulled. When the disk has moved a distance of 6 m, what is the speed of the center of mass?



Relevant equations (I think...):
I=1/2MR^2
FR=Iα
α=a/R


So far, I have:
FR=Iα
FR=1/2MR^2(a/R)
F=1/2Ma
a=2*F/M=3.33333 m/s^2

and then,
v^2=2*a*6m, since initial velocity is 0.
v=7.26 m/s

But this is wrong, and I'm not sure why. Please help!
 
Physics news on Phys.org
Newton's second law holds for translational motion, even if the net force results in a torque. The angular and linear components can be dealt with separately when they are not "coupled" via some friction or other mechanical mechanism (like a rolling object or a pulley and string).
 
Thank you. I'm not sure how I would use Newton's Second Law, due to the fact that the normal force and mg are perpendicular to the movement and therefore not contributing to the velocity.

I'm so frustrated :)
 
atlarge said:
Thank you. I'm not sure how I would use Newton's Second Law, due to the fact that the normal force and mg are perpendicular to the movement and therefore not contributing to the velocity.

I'm so frustrated :)

mg and the normal force are equal and opposite, so their contribution vanishes. You only have to deal with the force applied via the string.
 
OH, thank you gneill!

Answer is:

F=ma
35N=(21kg)a
a=1.667 m/s^2

v^2=0 + 2(1.667)(7.9), 0 being the initial velocity
v=5.1 m/s
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top