murshid_islam
- 468
- 21
- Homework Statement
- Verify that [tex]\lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right]= a[/tex]
- Relevant Equations
- [tex]\lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right]= a[/tex]
I have to prove that \lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right]= a (in order to show that the indeterminate form of the type 0^0 can be any positive real number).
This is what I did:
Let y = \lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right]
\ln y = \ln \left( \lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right] \right) = \lim_{x \rightarrow 0^+} \ln x^\left[(\ln a)/(1+ \ln x)\right] = \lim_{x \rightarrow 0^+} \frac{\ln a}{1+ \ln x} \ln x = (\ln a)\lim_{x \rightarrow 0^+} \frac{\ln x}{1+ \ln x}
Now, using L'Hopital's Rules, \ln y = (\ln a)\lim_{x \rightarrow 0^+} \frac{\frac{1}{x}}{\frac{1}{x}} = \ln a
Therefore, y = a
This is what I did:
Let y = \lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right]
\ln y = \ln \left( \lim_{x \rightarrow 0^+} \left[x^\left[(\ln a)/(1+ \ln x)\right] \right] \right) = \lim_{x \rightarrow 0^+} \ln x^\left[(\ln a)/(1+ \ln x)\right] = \lim_{x \rightarrow 0^+} \frac{\ln a}{1+ \ln x} \ln x = (\ln a)\lim_{x \rightarrow 0^+} \frac{\ln x}{1+ \ln x}
Now, using L'Hopital's Rules, \ln y = (\ln a)\lim_{x \rightarrow 0^+} \frac{\frac{1}{x}}{\frac{1}{x}} = \ln a
Therefore, y = a