yungman
- 5,741
- 294
I want to verify simple integration and differentiation of a vector and verify that the direction of the derivative and integral of a vector is not the same direction of the original vector. Let:
\vec A = \hat x A_x + \hat y A_y + \hat z A_z
1) Differentiation:
\frac {d \vec A}{dx} = \hat x \frac {d A_x}{dx} \;+\; \hat y \frac {d A_y}{dx} \;+\; \hat z \frac {d A_z}{dx}
2) Integration:
\int\int\int \vec A \;dxdydz \;\;= \;\; \hat x \int\int\int A_x \;dxdydz \;\;+\;\; \hat y \int\int\int A_y \;dxdydz \;\;+\;\; \hat z \int\int\int A_z \;dxdydz
eg. If
\vec A = \hat x x \;+\; \hat y y \;+\; \hat z z \;\Rightarrow\; \int\int\int \vec A \;dxdydz \;\;=\;\; \hat x (\frac 1 2 x^2yz +C_1)\;\;+\;\; \hat y (\frac 1 2 xy^2z +C_2)\;\;+\;\; \hat z (\frac 1 2 xyz^2 +C_3)
For simplification, I did not perform a true volume integral that have limits on x, y and z.
Therefore the direction of the derivative and integral of a vector is not the same direction as the original vector.
\vec A = \hat x A_x + \hat y A_y + \hat z A_z
1) Differentiation:
\frac {d \vec A}{dx} = \hat x \frac {d A_x}{dx} \;+\; \hat y \frac {d A_y}{dx} \;+\; \hat z \frac {d A_z}{dx}
2) Integration:
\int\int\int \vec A \;dxdydz \;\;= \;\; \hat x \int\int\int A_x \;dxdydz \;\;+\;\; \hat y \int\int\int A_y \;dxdydz \;\;+\;\; \hat z \int\int\int A_z \;dxdydz
eg. If
\vec A = \hat x x \;+\; \hat y y \;+\; \hat z z \;\Rightarrow\; \int\int\int \vec A \;dxdydz \;\;=\;\; \hat x (\frac 1 2 x^2yz +C_1)\;\;+\;\; \hat y (\frac 1 2 xy^2z +C_2)\;\;+\;\; \hat z (\frac 1 2 xyz^2 +C_3)
For simplification, I did not perform a true volume integral that have limits on x, y and z.
Therefore the direction of the derivative and integral of a vector is not the same direction as the original vector.
Last edited: