Verify integration of a sine function

In summary, the conversation discusses the use of part of HS-Scientist's derivation in solving the integral ## \int_0^{\pi} \sin(x sin(\theta)) d\theta##. The conversation also includes a detailed explanation of the derivation process, including the use of substitution and series expansion. The final result is found to be correct after correcting for two mistakes.
  • #1
yungman
5,751
290
I use part of HS-Scientist derivation in another post thanks to his detail derivation. I want to solving ## \int_0^{\pi} \sin(x sin(\theta)) d\theta##


[tex] \int_0^{\pi} \sin^m(\theta) d\theta=-\frac{1}{m}\left[sin^{m-1}(x)cos(\theta)\right]_0^{\pi}+\frac{m-1}{m} \int sin^{m-2}(\theta) d\theta= \frac{m-1}{m} \int sin^{m-2}(\theta) d\theta[/tex]
[tex]\hbox{As }\;\left[sin^{m-1}(x)cos(\theta)\right]_0^{\pi}=0[/tex]


Let ##m=2n+1##
[tex]\Rightarrow\; \int_0^{\pi} \sin^m(\theta) d\theta=\int_0^{\pi} \sin^{2n+1}(\theta) d\theta=\frac{2n}{2n+1}\int_0^{\pi} \sin^{2n-1}\theta d\theta=\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\int_0^{\pi}\sin\theta d\theta[/tex]
[tex]\Rightarrow\; \int_0^{\pi} \sin^{2n+1}(\theta) d\theta=\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\int_0^{\pi}\sin\theta d\theta =2\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}[/tex]
[tex]\sin x =\sum_0^{\infty}\frac {(-1)^n x^{2n+1}}{(2n+1)!}[/tex]


[tex]\Rightarrow\;\int_0^\pi \sin(x sin(\theta)) d\theta=\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!} \int_0^{\pi}\sin^{2n+1}\theta d\theta\;=\;\left[\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!}\right]\left[2\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\right][/tex]

[tex]\Rightarrow\;\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{(2n+1)!} \frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))} \;=\;\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{3^2 \cdot 5^2\cdot 7^2\cdot \cdot \cdot \cdot (2n+1)^2}[/tex]


I want to verify I am correct in my derivation.

Thanks
 
Last edited:
Physics news on Phys.org
  • #2
yungman said:
I use part of HS-Scientist derivation in another post thanks to his detail derivation. I want to solving ## \int_0^{\pi} \sin(x sin(\theta)) d\theta##


[tex] \int_0^{\pi} \sin^m(\theta) d\theta=-\frac{1}{m}\left[sin^{m-1}(x)cos(\theta)\right]_0^{\pi}+\frac{m-1}{m} \int sin^{m-2}(\theta) d\theta= \frac{m-1}{m} \int sin^{m-2}(\theta) d\theta[/tex]
[tex]\hbox{As }\;\left[sin^{m-1}(x)cos(\theta)\right]_0^{\pi}=0[/tex]


Let ##m=2n+1##
[tex]\Rightarrow\; \int_0^{\pi} \sin^m(\theta) d\theta=\int_0^{\pi} \sin^{2n+1}(\theta) d\theta=\frac{2n}{2n+1}\int_0^{\pi} \sin^{2n-1}\theta d\theta=\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\int_0^{\pi}\sin\theta d\theta[/tex]
[tex]\Rightarrow\; \int_0^{\pi} \sin^{2n+1}(\theta) d\theta=\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\int_0^{\pi}\sin\theta d\theta =\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\pi[/tex]
[tex]\sin x =\sum_0^{\infty}\frac {(-1)^n x^{2n+1}}{(2n+1)!}[/tex]


[tex]\Rightarrow\;\int_0^\pi \sin(x sin(\theta)) d\theta=\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!} \int_0^{\pi}\sin^{2n+1}\theta d\theta\;=\;\left[\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!}\right]\left[\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\pi\right][/tex]

[tex]\Rightarrow\;\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!} \frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\pi \;=\;\;\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{2^2 \cdot 4^2\cdot 6^2\cdot \cdot \cdot \cdot (2n)^2}\pi[/tex]


I want to verify I am correct in my derivation.

Thanks

Here is what I get using Maple 11:
f:=sin(x*sin(t));
f := sin(x sin(t)) <--- echo of input
J:=int(f,t =0..Pi);
J := Pi StruveH(0, x) <--- the answer

The function 'StruveH' is non-elementary and is related to solutions of non-homogeneous Bessel differential equations.

We can look at the series expansion:

series(J,x=0,10); <--- get the first 10 terms of the series expn about x = 0:

J = 2*x-(2/9)*x^3+(2/225)*x^5-(2/11025)*x^7+(2/893025)*x^9+O(x^10)

Note that the terms do NOT contain π, so this does not match your solution.
 
  • Like
Likes 1 person
  • #3
Thanks for the reply. I double checked, I made two mistakes.

1) my in cut and paste in the very last step was wrong. I since corrected the original post already.

2)My other mistake was
[tex]\int_0^{\pi}\sin\theta d\theta=-\cos\theta|_0^{\pi} =-[\cos(\pi)-cos(0)] =-[-1-1] =2\;\hbox {not }\;\pi[/tex]I did the substitution. I got

[tex]n=0\;\Rightarrow \;\frac {2 x}{1^2}=2 x[/tex]
[tex]n=1\;\Rightarrow \;-\frac {2 x^3}{3^2}=-\frac {2 x^3}{9}[/tex]
[tex]n=2\;\Rightarrow \;\frac {2 x^5}{3^2\cdot 5^2}=\frac {2 x^5}{225}[/tex]
[tex]n=3\;\Rightarrow \;-\frac {2 x^7}{3^2\cdot 5^2\cdot 7^2}=-\frac {2 x^7}{11025}[/tex]
[tex]n=4\;\Rightarrow \;\frac {2 x^9}{3^2\cdot 5^2\cdot 7^2\cdot 9^2}=\frac {2 x^9} {893925}[/tex]

Now it fits your result.

Thanks
 
Last edited:

FAQ: Verify integration of a sine function

1. What is the purpose of verifying the integration of a sine function?

The purpose of verifying the integration of a sine function is to ensure that the integral calculation is correct and to confirm that the anti-derivative of the function is accurate.

2. How do you verify the integration of a sine function?

To verify the integration of a sine function, we can use techniques such as substitution, integration by parts, or trigonometric identities to simplify the integral and check if it matches the original function.

3. Can a sine function be integrated using any method?

Yes, a sine function can be integrated using various methods such as substitution, integration by parts, trigonometric identities, or the fundamental theorem of calculus.

4. Is it necessary to verify the integration of a sine function?

While it is not always necessary, verifying the integration of a sine function can help catch any errors in the calculation and provide reassurance that the anti-derivative is correct.

5. Are there any common mistakes when verifying the integration of a sine function?

Some common mistakes when verifying the integration of a sine function include forgetting to use the chain rule or making errors in trigonometric identities. It is important to double-check all steps and calculations to ensure accuracy.

Similar threads

Replies
3
Views
1K
Replies
8
Views
1K
Replies
6
Views
1K
Replies
13
Views
2K
Replies
6
Views
1K
Replies
9
Views
1K
Replies
7
Views
1K
Back
Top