1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Verify integration of a sine function

  1. Jul 12, 2013 #1
    I use part of HS-Scientist derivation in another post thanks to his detail derivation. I want to solving ## \int_0^{\pi} \sin(x sin(\theta)) d\theta##

    [tex] \int_0^{\pi} \sin^m(\theta) d\theta=-\frac{1}{m}\left[sin^{m-1}(x)cos(\theta)\right]_0^{\pi}+\frac{m-1}{m} \int sin^{m-2}(\theta) d\theta= \frac{m-1}{m} \int sin^{m-2}(\theta) d\theta[/tex]
    [tex]\hbox{As }\;\left[sin^{m-1}(x)cos(\theta)\right]_0^{\pi}=0[/tex]

    Let ##m=2n+1##
    [tex]\Rightarrow\; \int_0^{\pi} \sin^m(\theta) d\theta=\int_0^{\pi} \sin^{2n+1}(\theta) d\theta=\frac{2n}{2n+1}\int_0^{\pi} \sin^{2n-1}\theta d\theta=\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\int_0^{\pi}\sin\theta d\theta[/tex]
    [tex]\Rightarrow\; \int_0^{\pi} \sin^{2n+1}(\theta) d\theta=\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\int_0^{\pi}\sin\theta d\theta =2\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}[/tex]
    [tex]\sin x =\sum_0^{\infty}\frac {(-1)^n x^{2n+1}}{(2n+1)!}[/tex]

    [tex]\Rightarrow\;\int_0^\pi \sin(x sin(\theta)) d\theta=\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!} \int_0^{\pi}\sin^{2n+1}\theta d\theta\;=\;\left[\sum_0^{\infty} \frac {(-1)^n x^{2n+1}}{(2n+1)!}\right]\left[2\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))}\right][/tex]

    [tex]\Rightarrow\;\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{(2n+1)!} \frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))} \;=\;\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{3^2 \cdot 5^2\cdot 7^2\cdot \cdot \cdot \cdot (2n+1)^2}[/tex]

    I want to verify I am correct in my derivation.

    Last edited: Jul 13, 2013
  2. jcsd
  3. Jul 12, 2013 #2

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    Here is what I get using Maple 11:
    f := sin(x sin(t)) <--- echo of input
    J:=int(f,t =0..Pi);
    J := Pi StruveH(0, x) <--- the answer

    The function 'StruveH' is non-elementary and is related to solutions of non-homogeneous Bessel differential equations.

    We can look at the series expansion:

    series(J,x=0,10); <--- get the first 10 terms of the series expn about x = 0:

    J = 2*x-(2/9)*x^3+(2/225)*x^5-(2/11025)*x^7+(2/893025)*x^9+O(x^10)

    Note that the terms do NOT contain π, so this does not match your solution.
  4. Jul 13, 2013 #3
    Thanks for the reply. I double checked, I made two mistakes.

    1) my in cut and paste in the very last step was wrong. I since corrected the original post already.

    2)My other mistake was
    [tex]\int_0^{\pi}\sin\theta d\theta=-\cos\theta|_0^{\pi} =-[\cos(\pi)-cos(0)] =-[-1-1] =2\;\hbox {not }\;\pi[/tex]

    I did the substitution. I got

    [tex]n=0\;\Rightarrow \;\frac {2 x}{1^2}=2 x[/tex]
    [tex]n=1\;\Rightarrow \;-\frac {2 x^3}{3^2}=-\frac {2 x^3}{9}[/tex]
    [tex]n=2\;\Rightarrow \;\frac {2 x^5}{3^2\cdot 5^2}=\frac {2 x^5}{225}[/tex]
    [tex]n=3\;\Rightarrow \;-\frac {2 x^7}{3^2\cdot 5^2\cdot 7^2}=-\frac {2 x^7}{11025}[/tex]
    [tex]n=4\;\Rightarrow \;\frac {2 x^9}{3^2\cdot 5^2\cdot 7^2\cdot 9^2}=\frac {2 x^9} {893925}[/tex]

    Now it fits your result.

    Last edited: Jul 13, 2013
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted