caharris
- 13
- 0
Homework Statement
Verify that \frac{Csc(x)}{Cot(x)+Tan(x)}=Cos(x) is an identity.
Homework Equations
All of the trigonometric identities. Sin^{2}+Cos^{2}=1; tan^{2}+1=Sec^{2}; 1+Cot^{2}=Csc^{2}; etc.
The Attempt at a Solution
I've literally written about five pages worth trying different things, so I'll get you to where I get lost (both ways) that seemed the most promising to me.
1) \frac{Csc(x)}{\frac{Sin(x)}{Cos(x)}+\frac{Cos(x)}{Sin(x)}}=Cos(x)
\frac{1}{Sin(x)}*\frac{Cos(x)}{Sin(x)}+\frac{Sin(x)}{Cos(x)}=Cos(x)
\frac{1}{Cos(x)}+\frac{Cos(x)}{Sin(x)}=Cos(x)
*Stuck*
2)Csc(x)=Cos(x)Cot(x)+Tan(x)
Csc(x)=Cos(x)\frac{Cos(x)}{Sin(x)}+\frac{Sin(x)}{Cox(x)}
Csc(x)=Sin(x)+\frac{Cos(x)}{Sin(x)}
*stuck*
(This didn't type out very well, I'll be happy to post a picture of it worked out if you'd like)
Homework Statement
Simplify Sin2(x) Cos2(x) - Cos2(x)
Homework Equations
Same equations as above.
The Attempt at a Solution
To be honest, I don't even know where to begin. I tried changing all of them into their Pythagorean identities to see if I could end up canceling anything and I don't think I can. I thought about dividing the whole thing by Cos2, but I don't know if I could. Though, when I tried to do that anyways, I still ended up stuck.
I'll post all the trial and error pictures if you'd like.
Any help is greatly appreciated. I don't need any answers, I just would like a suggestion or a nest-step idea. I've been working on these for a few hours and I think I've become numb to see anything new.