Verify the commutation relations for x and p by definition.

pdxautodidact
Messages
26
Reaction score
0

Homework Statement


Verify ##\left[ x^{i} , p_{k}\right] = i \hbar \delta^{i}_{k}##

Homework Equations


## p_{j} = -i \hbar \partial_{j}##

The Attempt at a Solution



Writing it out i get
$$ i \hbar \left( \partial_{k} x^{j} - x^{j} \partial_{k} \right)$$
The Kronecker makes perfect sense, it's identically zero unless k=j. Assuming it does, I arrive at:
$$ i \hbar \delta^{j}_{k} \left( \partial_{k} x^{j} - x^{j} \partial_{k} \right)$$

I assume I am missing something obvious, because most of the problem in this book are pretty straight forward, but this one's been a pain. I'm not doing any coursework, I already did my undergrad and am in limbo.

*Note Einstein convention is in use*
cheers.
 
Physics news on Phys.org
You should apply the commutator to a test function f(xk) (which is shorthand for f(x1, x2, x3) because k is a free index) and work out what the partials do with it.
 
CompuChip said:
You should apply the commutator to a test function f(xk) (which is shorthand for f(x1, x2, x3) because k is a free index) and work out what the partials do with it.

I don't follow, do you mean what the term in parenthesis becomes when i=J? (## 1- x \bullet \nabla##). The book's question specifically says verify the commutation relation using the definition of momentum given. Sorry, I should have been more precise maybe?
 
I mean that "##(\partial_k x^j - x^j \partial_k)##" by itself does not make sense. You should consider a test function f and work out what
$$(\partial_k x^j - x^j \partial_k)f$$
is, taking into account things like the product (Leibniz) rule.

I assume that by "use the definition of momentum" they just mean you should use ## p_{j} = -i \hbar \partial_{j}## as you have already done.
 
  • Like
Likes 1 person
CompuChip said:
I mean that "##(\partial_k x^j - x^j \partial_k)##" by itself does not make sense. You should consider a test function f and work out what
$$(\partial_k x^j - x^j \partial_k)f$$
is, taking into account things like the product (Leibniz) rule.

I assume that by "use the definition of momentum" they just mean you should use ## p_{j} = -i \hbar \partial_{j}## as you have already done.

I understand that it works, the problem comes from a chapter titled "Lie Groups and Lie Algebras", so I assumed it was something more fundamental. Thank you.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top