Vertically launched rocket problem with integration

Lawrencel2
Messages
81
Reaction score
0

Homework Statement


Find the Rockets height as a function of time
It is in a constant field g. u refers to the exhaust speed and M is the initial mass.
Starts from rest. and is single stage.

Homework Equations


1) m * dv/dt= -dm/dt * u-mg

2)Show that height as t is: y(t)= u*t- 1/2*g*t^2- u*t*ln(M/m)

The Attempt at a Solution


Ok, i arrived at a function very similar to the the height but, i cannot seem to get the u*t term in the function. i get y(t)= - 1/2*g*t^2- u*t*ln(M/m)
where do i get the u*t term from? i feel like i am so close to the answer but so far away..
I integrated 1) and arrived at V(t)= u*ln(M/m)-g*t
 
Physics news on Phys.org
no help?
 
Hi, I did look at this earlier but got stuck with your first integration. It is likely there is a constant of integration you are missing so if you are still stuck and want to, please can you show me your steps to integrate 1) and then I will see if I can help?

Cheers
 
I'm pretty sure you're forgetting that mass is a function of time, so your integration of u*ln(M/m(t))*dt isn't as simple as you had hoped...

Edit:
Hint: Do the integration w.r.t. mass, and not time. The key here is that (I'm assuming) the fuel burn rate is constant, so dm/dt = -c, where c is some constant. Use that to replace dt with -dm/c. Also, don't forget to solve for the constant of integration using the initial condition m(0) = M.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top