Very simple Accelerated motions

  • Thread starter Thread starter dman5505
  • Start date Start date
AI Thread Summary
An object released from rest at the top of a building and a second object dropped later are analyzed for their vertical separation L. The equation L = (1/2)gt^2 - (1/2)g(t_0 + t)^2 is proposed to find L, but confusion arises regarding the correct representation of time for each object. The discussion suggests starting with separate position equations for both objects, incorporating the time delay t_0 for the second object. Clarification is sought on how to correctly derive the relationship for L, emphasizing the need for accurate time representation. The conversation highlights the importance of proper equation setup to solve the problem effectively.
dman5505
Messages
1
Reaction score
0

Homework Statement



At t=0 an object is released from rest at the top of a tall building. At the time t_0 a second object is dropped from the same point. Ignoring air resistance, show that the time at which the objects have a vertical separation L is given by: t=L/(gt_0 )+t_0/2.

Homework Equations



L=v_0*t + (1/2)at^2

The Attempt at a Solution



With much fidgeting with the above equation, I decided that the distance must be equal to L=(1/2)gt^2-(1/2)g(t_0+t)^2. However when I simplified the equation, L=-L/(gt_0)-t_0/2 which is the equation I supposed to get multiplied by -1. Since the object is going down, maybe L is supposed to be -L?

More importantly, I was confused on how to represent the change in time for the second object and the first object.
 
Physics news on Phys.org
Welcome to PF, dman.
I don't think your expression L=v_0*t + (1/2)at^2 can be correct because it doesn't include a variable t_0, which clearly affects L.
Why not start with an expression for the position of the first object as a function of time?
Then an expression for the position of the second. It will probably have a t - t_0 in it.
Finally, subtract the two to get L.
 
Hi, I have the same problem, did you manage to solve it?
 
Yes, it works out well. Show your work if you would like help with it.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top